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Basics

e Power laws: z%’ = z°7°, 2—? = zo7°,
(xa)b — xab

e Log rules: log(zy) = log(z) + log(y),

log(z/y) = log(z) — log(y), log(z®) =
alog(z),In1=0,Ine=1,Iny/z=1Inz

e DeMorgan: (AU B)° = A°N B° and
(AN B)° = A°UB°

e Derrivatives: (fg)' = f'g+ fqg', (f/g9) =
(f'g = 1d)/9* (F(9)) = ['(9)g', (ae™)" =
ae®, (Inz) =1/x

. Integrals [ @) (x)dz = f(x)g(z) —
[ f(@)g(z)dz, [e*dz = Le* + C,
JIn(z) dx—mln( )—xz+C

e Integration by parts: fudv = uv —

Jvdu. u := fn that simp. when different.

e QF: z = 7bi” b2-dac for qa? +bx+c=0.

e MatMul: IfA m X n,B :
C=AB,cij => 1, Girby;.

e Determinant of 2 x 2 mat is ad — bc, 3 X 3
is a(ei — fh) — b(di — fg) + c(dh — eg).

e Eigenvalue of A is A where Av = \v
for some non-zero v. A found by solving
det(A—XI)=0

e Spectral: If A sym., then A = QAQ’ with
orthogonal @ of v’s and diag(\;).

Probability

e Probability measure P on a o-algebra C
over sample space Q2 is fn P : C — [0, 1] that
satisfies (1) VA € C, P(A) >0, (2) P(Q) =
1,(3)VieN,A, €C, AinA; =0 fori+#j

n X p and

implies P (U2, As) = >i2, P(A;). This

implies (1) P(B) =0, (2) P(A°) =1—P(A),

(3) P(AUB) = P(A)+ P(B) — P(AN B).

e Bayes’ rule: For events A, B where
A)P(A

P(B) > 0, P(A|B) = ZELOIA - p(A|B)

satisfies the axioms of a probability mea-
sure.

e Law of total probability: For
events B, Ai1,As,... that form a par-
tition of the sample space, P(B) =

2oy P(BlA)P(A).

e Events A, B are independent if P(A N
B) = P(A)P(B) = if P(B) > 0 inde-
pendence is given when P(A|B) = P(A)

Random Variables/Vectors

e A random variable is a measurable fn
X: Q=R

e The cdf of X is Fx(z) = P(X < z). The
pmf of a discrete r.v. X is px(z) = P(X =

z). The pdf of a continuous r.v. X is fx(x)
where Fx(z f fx(t)dt. A r.v. is con-
tinous if its cdf can be expressed as an inte-
gral of a pdf.

e For rwvs X,Y, the joint cdf is
Fxy(z,y) = P(X < z,Y < y) =
P{w: X(w) <z}n{w:Y(w) <y}).

The marginal cdf is Fx(z) =
lirny_mo Fxy(z,y). The marginal pdf
is fx(z) = [7, fx.v(z,y)dy.

e Two r.v.s are independent if Fx y(z,y) =

Fx (z)Fy (y) — fxy(@y) =
fx(x) fy(y) Vz,y. Two r.v.s can not be in-
dependent if their support depends on each
other.

e Conditional pdf: fxy(zly) =
if fy( ) > 0.
Fxiy(zly) = [2
dence implies fx|y (z|y) =

fxy(z,y)
fy (v)
The conditional cdf is

fxv (tly)dt. Indepen-
fx ().

Transformation: If X isr.v. and Y =
g(X) then fy(y) = Ffx (g7 () |det(J)

—1
with J = (Lgy )
J

i,j=1

e Probability integral transform: If X is con-
tinuous r.v. with cdf Fx, then Fx(X) ~
Uniform(0, 1).

Moments

e If X has pdf fx(z), then the expec-
tation E[X] = [% xfx(x)dzr provided

ffooo |z|fx (z)dz < oo.

The expectation of a function ¢g(X) is

Elg(X)] = [Z 9(z) fx (2)dz.

. The conditional expectation is E[Y|X =
f_ fY\X (ylz)dy.

The law of iterated expectation is
E[Y] = E[E[Y]|X]].

e The k-th moment of X is pux = E[X"].
The k-th central moment is uj, = E[(X —

E[X])*].

e Variance is 0% = Var(X) = E[(X —
E[X])?] = E[X*] — (E[X])*.

e Covariance is Cov[X,Y] = E[(X —
EX))(Y — E[Y])] = E[XY] - E[X]E[Y].
X 1Y = Cov[X,Y] = O

Cov [aU + bV, cW + dZ] = acCov [U, W] +
ad Cov [U, Z] 4+ bc Cov [V, W]+ bd Cov [V, Z].
Cov[X,Y]
oOXoy
e The law of total variance is Var(Y) =
E[Var(Y|X)] + Var(E[Y|X]).
e The covariance matrix of r.v. X is
Y=E[(X -EX)(X - IE[X])'}, with ¥;; =
Cov [X;, X;] and %;; = O’X
Linear transformations of r.v.: f Y = AX +
b then E[Y] = AE[X] + b and Var(Y) =
AVar(X)A'.
The mgf of X is Mx(t) = E[e™] =
70 € fx(z)dx. The k-th moment is i, =

M)((M (0). The mgf of independent r.v.s X, Y
satisfies Mx 1y (t) = Mx (t) My (t)

The correlation is px,y =

o chf of X is ¢x(t) = E[e"™™] = Mx(it) =
E[isin(tX) + cos(tX)] = E[cos(tX)] +
iE[sin(tX)].

Common Distributions

e Bernoulli(p): P(X = 1) = p, P(X =
0) =1—p. E[X]=p, Var(X) = p(1 - p),

Mx(t) =1 —p+pe', px(t) =1 — p+ pe'.
L d Binom(n,p): P(X = I) = (z)pw(l_p)nfwh
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E[X] = np, Var(X) = np(1 — p), \1\( ) =
(lfpfp("\)”,cﬁx():(l p+ pet)r. If
=>" X, X i Binom(n,p) =

Y ~ Binom(>>" n;, p).
e Poisson()\): P(X =z) = AI{:;A. EX] =
A, Var(X) = A, M () = N1 gx(t) =
ATy = Y oX, X, R

Poisson(A) = Y ~ Poisson(}.™ \i).

e Uniform(a,b): fx(z) = ;- E[X] = °,
Var(X) = %

e Standard Normal(0,1) fx(x) =
\/77(’7( /2 E[X} - 0 = E[XQ’VVI,+1]7
Var(X) = E[X =1, E[X* =3, Mx(t) =
S () =

o| Normal(yu, o?): fx(z)

2 o2 \
\/ﬁe*(lﬂb) /(207) Mx (t)
eht o2t? 2’ ¢X(t) — ei#t702t2/2. If
Y = Y7 X, X ESe Normal (i, 03)
= YNNormal(chmi,Z 0202)
e Var of aX; + bXo w/ X; ~ N(u;,07)

is a®0f + b*03 + 2abCov [X1, X2], where
COV [Xl,XQ} = po102.
o If Z ~ N(0,1), then X = p+ oZ ~

N(u,0?). Conversely, if X ~ N(u,o2),
then Z = % ~N(0,1).

o () X = Yu, 222 RN N1,

[X] = k Var(X) = 2k, Mx(t) = (1 —
2t) " ,¢X(t) (1 — 2it)~F/2.
ii.d.

o F(dl,dz). Xj Nda y; R X2 (da). )

o t(d): X = Werrh Z ~ N(0,1), Y ~ x*(d)
independent.

e Student’s Theorem: If X;,...,X, i

N(M’ ) theanX XN;A/(Mv 2/”)’
S = L YL - X))~ i (n - 1)
and S/f'“t(

e Bivariate standard normal (X,Y) has

_ 1 1
Ixy(z,y) = /12 eXp( 2(1,/,2)'“),
where u = 2% + y? — 2pzy.
e Bivariate normal (X,Y) has fx vy (z,y) =

— 1), even for small n.

= exp , where u =

1
2o xoy/1—p2 2(1-p2)

[(z nx)? + (y— uy) _ 2p(z*ux)(y*uy)].
GX o'Y oxOoy

p=0<=X 1LY << fxy(zy =
fx () fy (y).

Inequalities

e Markov: For non- ne ative r.v.
a>0,P(X >a)<

e Chebyshev: For r.v. X with mean p and
variance o2, and k > 0, P(|X — pu| > k) <

X and

0,2
ka.

e Jensen: For convex fn g and r.v. X,
E[g(X)] > g(E[X]). If g is concave, the

inequality is reversed.

e Cauchy-Schwarz: For rvs X,Y,
[E[XY]| < E[XZE[Y?]. If E[X°] =0
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or E[Y?] = 0, then equality holds. Other-
wise, equality holds iff there exist con-
stants a,b, not both zero, such that
PaX +bY =0) = 1.

Convergence

e Almost sure convergence: X, 25 X if
P{w : limp o0 Xn(w) = X(w)}) = 1.

e Convergence in probability: X, 2 X
if Ve > 0,lim, 00 P(|Xn — X| > €) = 0.

e For constant b and r.v. X,,,Y,: If X, NS¢
and Y, & Y, then bX, +Y, & bX +Y,
XY, & Xy.

e Convergence in r-th mean: X, RN ‘e
if limp—oo E[|Xn — X|"] =0 for » > 0.

e Convergence in distribution: X, i)
X if limpsoo Fx, () = Fx(z) at all
points z where Fx is continuous. V fn g :
bounded continuous, X, i> X <=
limp 00 Elg(Xn)] = E[g(X)].

o X, X X = X, 5 X; X, 5
X = Xnt_—m)XforTZt>1;
X, 5 X = X, 5 X forr > 1,
X, HX = X, 4 X

e CMT: If X,, — X and continuous g, then
9(Xn) = g(X), for as., p, d, and to r.m.
if fn is Lipschitz. This applies too if X is
constant.

e Slutsky’s theorem: If X, i> X and
Yo B¢, then Xo + Yy 5 X +¢, XoY, %
X, and if ¢ £ 0, X,/Yn 5 X/c.

e op: Wesay X,, = op(an) if Xy /an 20 =
P(|Xn/an| > € =0V e>0.

e Oy Wesay X, = Op(ay) if Ve > 0,3M >
0,N >0s.t. P(|Xn/an| > M) <eVn.

LLN, CLT, Delta Method
e WLLN: If X; with E[X;] = p, Var(X;) =

o®, Cov[X;, X;] = 0 for i # j. Let

X'n = %Z:;1X17 ﬂ = %Z?:lljfh and
_2

62 = LI3" of. If T - 0asn — oo,

then X,, — i 2 0.
e LL CLT: If X; iid w/ E[X;] = p, Var(X;) =

o®. Let X, = 13"  X;. Then /n(X, —
1w L N(0,0%) and Vnjo(X, — p) S
N(0,1).

o LF CLT: For X ~ iid(p, %), 7= >0, (Xi—
1) 5 N(0,02).

e Probabilities from normal approx: For
any X ~ N(u,0%) and a € R: P(X >
a) = P (538 > 208) =1 -0 (0F) =
P(X <a)=o(%=4)

e| Delta Method: Let X, be a sequence of
r.v.s and g a fn differentiable at point a

with ¢ (a) # 0. If /i(X,—a) % N(0,02),
then n(g9(Xn) — g(a)) L N(g(a) -
0, (¢'(a))?0?).

e MV Delta Method: Let X, be a se-

quence of k x 1 random vectors such that
Via(Xn —a) % N(0,%) and let g : R¥ —
R™ be a function that is differentiable at
a € RF with A the m x k Jacobian ma-
trix of first derivatives of g at a. Then,

Vi(g(Xn) — g(a)) % N (0, ATA)
Estimation

e Loss: A loss fn L(6, a) measures the cost of
taking action a when the true parameter is
0. The risk fn is R(6,0) = Eo[L(0,0(X))].

e Estimator: Let X r.v. length n with cdf
Fx(z,0) depending on parameter § € © C
R*. An estimator of 6 is a fn 6 = g(X).

e Bias: Bias(f) = E[0] — 6. If Bias(d) = 0, 0
is unbiased.

e MSE: MSE(d) = E[(6 — 0)%] = Var(d) +
Bias(6).

e Consistency:
0. 2 0.

e Asymptotic normality: 6, is asymptoti-
cally normal if \/n(6, — 0) % N(0,02) for
some o2 > 0.

e MLE is invariant to reparametrizations:
if v = h(#) for some one-to-one function h,
then the MLE of v is 4 = h(f).

e Score: i.i.d. sample Xi,...,X, with

pdf f(z,0) with L(#) = >_7_, log f(X5,0).
OL(9)

0, is consistent for 0 if

The score is S(0) = ZF;~, ie. s =
dlog £(Xi,0) _ af(z,0
= 859 ) = f(;;,g) ég ). At the true pa-
rameter, E[S(0)] = 0.
e Fisher information: 1(0) =
9210 0
B [ HXO] — Var(5(9)).

° Cramer-Rao lowgr bound: For unbiased
estimator ¢, Var(§) > ﬁ, with I(0) =
nl(0) w/ 1(0) = —LE[2:].

e Under some regularity conditions, the
MLE éA{LE satisﬁes \/’ﬁ(éMLE — 0) i)

/\/(0,[_(0)71), as well as é]\/[LE ﬂ) 0o.
Testing

e Classification errors: Type I error: Re-
ject Hp when true. Type II error: Fail to
reject Ho when false.

o Testisafn ¢:R"” — {0,1} where ¢(z) =1
means reject Ho and ¢(x) = 0 means fail to
reject Ho.

e Level: ¢ has level a if Eo[¢p(X)]
a. The size of ¢ is supce, Eo[p(X)]
SUPgco, J o) f(x,0)dw.

e Power: The power function 3(¢)
E:[6(X)] = [ 6(2)f(x,0)da.

e p-value: The p-value is the smallest level
at which the test rejects the null hy-
pothesis: p = supgeg, Po(X € W) =
SUPgco, [y f(,0)dx where W is the rejec-
tion region.

e A test is said to be biased if its power is
less than its size for some 6 € ©;.

¢ Neyman-Pearson Lemma: For simple
hypotheses Ho : 6 = 0y vs. Hyi : 0 = 04,

<
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the most powerful level « test rejects Ho
when A(x) % > k for some k such
that Eo[¢(X)] = Po(A(z) > k) = . This
test does not depend on 61, can be used for
composite Hi, making it the UMP test.

Confidence set: Map S(X) such that
PGy € S(X)) > C for all 6y € ©. The
level is C'. The random set contains the
true parameter with probability at least C'.
Can be constructed by inverting a family of
a=1-—C tests: S(X)={6:¢(z,0) =0}
Log-likelihood ratio test &rr
2 [log L£(0) —log L(@O)]. Under regularity

conditions, if Hy is true, £Lr 5 X7 where

k is the dimension of 6. .

Wald test ¢&w NICEE
Un-

8210g £(0) Tt
0o) (—2 25552 V(@ — o).
der regularity conditions, if Hy is true,

Ew LN X% where k is the dimension of 6.
Lagrange multiplier test: &pu

82 log £(6) | ~*
2S00 (— 125550 ) T J2S(80). Un-
der regularity conditions, if Hy is true,

ELm LN X2 where k is the dimension of .
Asymptotically, rr,&w,&Lm are equiva-
lent.

Bayes

Prior distribution 7(0) represents beliefs

about 0 before seeing data. Prior is conju-

gate if posterior is in same family as prior.

Posterior  distribution 7w (6|z)
f(x]0)m(6)

T 7 (el0)w(6)d0

Bayes action: a* = argmin, [ L(6, a)m(0|z)d6

Estimation is a special case with action

space © and the loss typically squared error

or absolute error. Testing is a special case

with action space {0,1} and loss matrix

L(6,a).

Credible sets are Bayesian analog of con-

fidence sets. A 100% credible set S(z) sat-

isfies P(6 € S(x)|z) = C.

Complete class theorem: Under mild

regularity conditions, every admissible deci-

sion rule is a Bayes rule or a limit of Bayes

rules.



