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Basics

• Power laws: xaxb = xa+b, xa

xb = xa−b,

(xa)b = xab

• Log rules: log(xy) = log(x) + log(y),
log(x/y) = log(x) − log(y), log(xa) =
a log(x), ln 1 = 0, ln e = 1, ln

√
x = 1

2
lnx

• DeMorgan: (A ∪ B)c = Ac ∩ Bc and
(A ∩B)c = Ac ∪Bc

• Derrivatives: (fg)′ = f ′g + fg′, (f/g)′ =
(f ′g − fg′)/g2, (f(g))′ = f ′(g)g′, (aex)′ =
aex, (lnx)′ = 1/x

• Integrals:
∫
f(x)g′(x)dx = f(x)g(x) −∫

f ′(x)g(x)dx,
∫
eaxdx = 1

a
eax + C,∫

ln(x)dx = x ln(x)− x+ C
• Integration by parts:

∫
u dv = uv −∫

v du. u := fn that simp. when different.

• QF: x =
−b±

√
b2−4ac

2a
for ax2 + bx+ c = 0.

• MatMul: If A : m × n,B : n × p and
C = AB, cij =

∑n
k=1 aikbkj .

• Determinant of 2× 2 mat is ad− bc, 3× 3
is a(ei− fh)− b(di− fg) + c(dh− eg).

• Eigenvalue of A is λ where Av = λv
for some non-zero v. λ found by solving
det(A− λI) = 0.

• Spectral: If A sym., then A = QΛQ′ with
orthogonal Q of v’s and diag(λi).

Probability
• Probability measure P on a σ-algebra C

over sample space Ω is fn P : C → [0, 1] that
satisfies (1) ∀A ∈ C, P (A) ≥ 0, (2) P (Ω) =
1, (3) ∀i ∈ N, Ai ∈ C, Ai ∩Aj = ∅ for i ̸= j
implies P

(⋃∞
i=1 Ai

)
=

∑∞
i=1 P (Ai). This

implies (1) P (∅) = 0, (2) P (Ac) = 1−P (A),
(3) P (A ∪B) = P (A) + P (B)− P (A ∩B).

• Bayes’ rule: For events A,B where
P (B) > 0, P (A|B) = P (B|A)P (A)

P (B)
. P (A|B)

satisfies the axioms of a probability mea-
sure.

• Law of total probability: For
events B,A1, A2, . . . that form a par-
tition of the sample space, P (B) =∑∞

i=1 P (B|Ai)P (Ai).
• Events A,B are independent if P (A ∩

B) = P (A)P (B) =⇒ if P (B) > 0 inde-
pendence is given when P (A|B) = P (A)

Random Variables/Vectors
• A random variable is a measurable fn

X : Ω → R.
• The cdf of X is FX(x) = P (X ≤ x). The

pmf of a discrete r.v. X is pX(x) = P (X =
x). The pdf of a continuous r.v. X is fX(x)
where FX(x) =

∫ x

−∞ fX(t)dt. A r.v. is con-
tinous if its cdf can be expressed as an inte-
gral of a pdf.

• For r.v.s X,Y , the joint cdf is
FX,Y (x, y) = P (X ≤ x, Y ≤ y) =
P ({ω : X(ω) ≤ x} ∩ {ω : Y (ω) ≤ y}).
The marginal cdf is FX(x) =
limy→∞ FX,Y (x, y). The marginal pdf
is fX(x) =

∫∞
−∞ fX,Y (x, y)dy.

• Two r.v.s are independent if FX,Y (x, y) =

FX(x)FY (y) ⇐⇒ fX,Y (x, y) =
fX(x)fY (y) ∀x, y. Two r.v.s can not be in-
dependent if their support depends on each
other.

• Conditional pdf: fX|Y (x|y) =
fX,Y (x,y)

fY (y)

if fY (y) > 0. The conditional cdf is
FX|Y (x|y) =

∫ x

−∞ fX|Y (t|y)dt. Indepen-

dence implies fX|Y (x|y) = fX(x).

• Transformation: If X is r.v. and Y =
g(X) then fY (y) = fX(g−1(y)) |det(J)|

with J =

(
∂g−1

i (y)

∂yj

)n

i,j=1

.

• Probability integral transform: If X is con-
tinuous r.v. with cdf FX , then FX(X) ∼
Uniform(0, 1).

Moments
• If X has pdf fX(x), then the expec-

tation E[X] =
∫∞
−∞ xfX(x)dx provided∫∞

−∞ |x|fX(x)dx < ∞.

• The expectation of a function g(X) is
E[g(X)] =

∫∞
−∞ g(x)fX(x)dx.

• The conditional expectation is E[Y |X =
x] =

∫∞
−∞ yfY |X(y|x)dy.

• The law of iterated expectation is
E[Y ] = E[E[Y |X]].

• The k-th moment of X is µk = E[Xk].
The k-th central moment is µ′

k = E[(X −
E[X])k].

• Variance is σ2
X = Var(X) = E[(X −

E[X])2] = E[X2]− (E[X])2.
• Covariance is Cov [X,Y ] = E[(X −

E[X])(Y − E[Y ])] = E[XY ] − E[X]E[Y ].
X ⊥⊥ Y =⇒ Cov [X,Y ] = 0.
Cov [aU + bV, cW + dZ] = acCov [U,W ] +
adCov [U,Z]+ bcCov [V,W ]+ bdCov [V, Z].

• The correlation is ρX,Y = Cov[X,Y ]
σXσY

.

• The law of total variance is Var(Y ) =
E[Var(Y |X)] + Var(E[Y |X]).

• The covariance matrix of r.v. X is
Σ = E[(X − E[X])(X − E[X])′], with Σij =
Cov [Xi, Xj ] and Σii = σ2

Xi
.

• Linear transformations of r.v.: If Y = AX+
b then E[Y ] = AE[X] + b and Var(Y ) =
AVar(X)A′.

• The mgf of X is MX(t) = E[etX ] =∫∞
−∞ etxfX(x)dx. The k-th moment is µk =

M
(k)
X (0). The mgf of independent r.v.s X,Y

satisfies MX+Y (t) = MX(t)MY (t).
• chf of X is ϕX(t) = E[eitX ] = MX(it) =

E[i sin(tX) + cos(tX)] = E[cos(tX)] +
iE[sin(tX)].

Common Distributions
• Bernoulli(p): P (X = 1) = p, P (X =

0) = 1 − p. E[X] = p, Var(X) = p(1 − p),
MX(t) = 1− p+ pet, ϕX(t) = 1− p+ peit.

• Binom(n, p): P (X = x) =
(
n
x

)
px(1−p)n−x.

E[X] = np, Var(X) = np(1 − p), MX(t) =
(1 − p + pet)n, ϕX(t) = (1 − p + peit)n. If

Y =
∑m

i=1 Xi, Xi
i.i.d.∼ Binom(n, p) =⇒

Y ∼ Binom(
∑m ni, p).

• Poisson(λ): P (X = x) = λxe−λ

x!
. E[X] =

λ, Var(X) = λ, MX(t) = eλ(e
t−1), ϕX(t) =

eλ(e
it−1). If Y =

∑m
i=1 Xi, Xi

i.i.d.∼
Poisson(λ) =⇒ Y ∼ Poisson(

∑m λi).
• Uniform(a, b): fX(x) = 1

b−a
. E[X] = a+b

2
,

Var(X) = (b−a)2

12
.

• Standard Normal(0, 1): fX(x) =
1√
2π

e−x2/2. E[X] = 0 = E[X2m+1],

Var(X) = E[X2] = 1, E[X4] = 3, MX(t) =

et
2/2, ϕX(t) = e−t2/2.

• Normal(µ, σ2): fX(x) =
1√

2πσ2
e−(x−µ)2/(2σ2). MX(t) =

eµt+σ2t2/2, ϕX(t) = eiµt−σ2t2/2. If

Y =
∑m

i=1 ciXi, Xi
i.i.d.∼ Normal(µi, σ

2
i )

=⇒ Y ∼ Normal
(∑m ciµi,

∑m c2iσ
2
i

)
.

• Var of aX1 + bX2 w/ Xj ∼ N (µj , σ
2
j )

is a2σ2
1 + b2σ2

2 + 2abCov [X1, X2], where
Cov [X1, X2] = ρσ1σ2.

• If Z ∼ N (0, 1), then X = µ + σZ ∼
N (µ, σ2). Conversely, if X ∼ N (µ, σ2),
then Z = X−µ

σ
∼ N (0, 1).

• χ2(k): X =
∑k

i=1 Z
2
i , Zi

i.i.d.∼ N (0, 1).
E[X] = k, Var(X) = 2k, MX(t) = (1 −
2t)−k/2, ϕX(t) = (1− 2it)−k/2.

• F (d1, d2): X = Y1d2
Y2d1

, Yi
i.i.d.∼ χ2(di).

• t(d): X = Z√
Y/d

, Z ∼ N (0, 1), Y ∼ χ2(d)

independent.

• Student’s Theorem: If X1, . . . , Xn
i.i.d.∼

N (µ, σ2), then 1
n

∑
Xi = X̄ ∼ N (µ, σ2/n),

S2 = 1
n−1

∑n
i=1(Xi − X̄)2 ∼ σ2

n−1
χ2(n− 1),

and X̄−µ
S/

√
n
∼ t(n− 1), even for small n.

• Bivariate standard normal (X,Y ) has

fX,Y (x, y) = 1

2π
√

1−ρ2
exp

(
− 1

2(1−ρ2)
u
)
,

where u = x2 + y2 − 2ρxy.
• Bivariate normal (X,Y ) has fX,Y (x, y) =

1

2πσXσY

√
1−ρ2

exp
(
− 1

2(1−ρ2)
u
)
, where u =[

(x−µX )2

σ2
X

+ (y−µY )2

σ2
Y

− 2ρ(x−µX )(y−µY )
σXσY

]
.

ρ = 0 ⇐ X ⊥⊥ Y ⇐⇒ fX,Y (x, y) =
fX(x)fY (y).

Inequalities
• Markov: For non-negative r.v. X and

a > 0, P (X ≥ a) ≤ E[X]
a

.
• Chebyshev: For r.v. X with mean µ and

variance σ2, and k > 0, P (|X − µ| ≥ k) ≤
σ2

k2 .
• Jensen: For convex fn g and r.v. X,

E[g(X)] ≥ g(E[X]). If g is concave, the
inequality is reversed.

• Cauchy-Schwarz: For r.v.s X,Y ,
|E[XY ]| ≤

√
E[X2]E[Y 2]. If E[X2] = 0
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or E[Y 2] = 0, then equality holds. Other-
wise, equality holds iff there exist con-
stants a, b, not both zero, such that
P (aX + bY = 0) = 1.

Convergence

• Almost sure convergence: Xn
a.s.−−→ X if

P ({ω : limn→∞ Xn(ω) = X(ω)}) = 1.

• Convergence in probability: Xn
p−→ X

if ∀ϵ > 0, limn→∞ P (|Xn −X| ≥ ϵ) = 0.

• For constant b and r.v. Xn, Yn: If Xn
p−→ X

and Yn
p−→ Y , then bXn + Yn

p−→ bX + Y ,

XnYn
p−→ XY .

• Convergence in r-th mean: Xn
r−m−−−→ X

if limn→∞ E[|Xn −X|r] = 0 for r > 0.

• Convergence in distribution: Xn
d−→

X if limn→∞ FXn(x) = FX(x) at all
points x where FX is continuous. ∀ fn g :

bounded continuous, Xn
d−→ X ⇐⇒

limn→∞ E[g(Xn)] = E[g(X)].

• Xn
a.s.−−→ X =⇒ Xn

p−→ X; Xn
r−m−−−→

X =⇒ Xn
t−m−−−→ X for r ≥ t > 1;

Xn
r−m−−−→ X =⇒ Xn

p−→ X for r ≥ 1,

Xn
p−→ X =⇒ Xn

d−→ X.
• CMT: If Xn → X and continuous g, then

g(Xn) → g(X), for a.s., p, d, and to r.m.
if fn is Lipschitz. This applies too if X is
constant.

• Slutsky’s theorem: If Xn
d−→ X and

Yn
p−→ c, then Xn + Yn

d−→ X + c, XnYn
d−→

cX, and if c ̸= 0, Xn/Yn
d−→ X/c.

• op: We sayXn = op(an) ifXn/an
p−→ 0 =⇒

P (|Xn/an| ≥ ϵ) → 0 ∀ ϵ > 0.
• Op: We say Xn = Op(an) if ∀ϵ > 0,∃M >

0, N > 0 s.t. P (|Xn/an| > M) < ϵ ∀ n.

LLN, CLT, Delta Method
• WLLN: If Xi with E[Xi] = µ, Var(Xi) =

σ2, Cov [Xi, Xj ] = 0 for i ≠ j. Let
X̄n = 1

n

∑n
i=1 Xi, µ̄ = 1

n

∑n
i=1 µi, and

σ̄2 = 1
n

∑n
i=1 σ

2
i . If σ̄2

n
→ 0 as n → ∞,

then X̄n − µ̄
p−→ 0.

• LL CLT: IfXi iid w/ E[Xi] = µ, Var(Xi) =
σ2. Let X̄n = 1

n

∑n
i=1 Xi. Then

√
n(X̄n −

µ)
d−→ N (0, σ2) and

√
n/σ(X̄n − µ)

d−→
N (0, 1).

• LF CLT: ForX ∼ iid(µ, σ2), 1√
n

∑n
i=1(Xi−

µ)
d−→ N (0, σ2).

• Probabilities from normal approx: For
any X ∼ N (µ, σ2) and a ∈ R: P (X >
a) = P

(
X−µ

σ
> a−µ

σ

)
= 1 − Φ

(
a−µ
σ

)
=⇒

P (X ≤ a) = Φ
(
a−µ
σ

)
• Delta Method: Let Xn be a sequence of

r.v.s and g a fn differentiable at point a

with g′(a) ̸= 0. If
√
n(Xn−a)

d−→ N (0, σ2),

then
√
n(g(Xn) − g(a))

d−→ N (g(a) ·
0, (g′(a))2σ2).

• MV Delta Method: Let Xn be a se-

quence of k × 1 random vectors such that
√
n(Xn − a)

d−→ N (0,Σ) and let g : Rk →
Rm be a function that is differentiable at
a ∈ Rk with A the m × k Jacobian ma-
trix of first derivatives of g at a. Then,
√
n(g(Xn)− g(a))

d−→ N (0, AΣA′)

Estimation
• Loss: A loss fn L(θ, a) measures the cost of

taking action a when the true parameter is
θ. The risk fn is R(θ, δ) = Eθ[L(θ, δ(X))].

• Estimator: Let X r.v. length n with cdf
FX(x, θ) depending on parameter θ ∈ Θ ⊆
Rk. An estimator of θ is a fn θ̂ = g(X).

• Bias: Bias(θ̂) = E[θ̂]− θ. If Bias(θ̂) = 0, θ̂
is unbiased.

• MSE: MSE(θ̂) = E[(θ̂ − θ)2] = Var(θ̂) +

Bias(θ̂)2.

• Consistency: θ̂n is consistent for θ if

θ̂n
p−→ θ.

• Asymptotic normality: θ̂n is asymptoti-

cally normal if
√
n(θ̂n − θ)

d−→ N (0, σ2) for
some σ2 > 0.

• MLE is invariant to reparametrizations:
if γ = h(θ) for some one-to-one function h,

then the MLE of γ is γ̂ = h(θ̂).
• Score: i.i.d. sample X1, . . . , Xn with

pdf f(x, θ) with L(θ) =
∑n

i=1 log f(Xi, θ).

The score is S(θ) = ∂L(θ)
∂θ

, i.e. si =
∂ log f(Xi,θ)

∂θ
= 1

f(x,θ)
∂f(x,θ)

∂θ
. At the true pa-

rameter, E[S(θ)] = 0.
• Fisher information: I(θ) =

−Eθ

[
∂2 log f(X,θ)

∂θ2

]
= Var(S(θ)).

• Cramer-Rao lower bound: For unbiased
estimator θ̂, Var(θ̂) ≥ 1

I(θ)
, with I(θ) =

nĪ(θ) w/ Ī(θ) = − 1
n
E[ ∂si(θ)

∂θ
].

• Under some regularity conditions, the

MLE θ̂MLE satisfies
√
n(θ̂MLE − θ)

d−→
N

(
0, Ī(θ)−1

)
, as well as θ̂MLE

p−→ θ0.

Testing
• Classification errors: Type I error: Re-

ject H0 when true. Type II error: Fail to
reject H0 when false.

• Test is a fn ϕ : Rn → {0, 1} where ϕ(x) = 1
means reject H0 and ϕ(x) = 0 means fail to
reject H0.

• Level: ϕ has level α if E0[ϕ(X)] ≤
α. The size of ϕ is supθ∈Θ0

Eθ[ϕ(X)] =
supθ∈Θ0

∫
ϕ(x)f(x, θ)dx.

• Power: The power function β(ϕ) =
E1[ϕ(X)] =

∫
ϕ(x)f(x, θ)dx.

• p-value: The p-value is the smallest level
at which the test rejects the null hy-
pothesis: p = supθ∈Θ0

Pθ(X ∈ W ) =
supθ∈Θ0

∫
W

f(x, θ)dx where W is the rejec-
tion region.

• A test is said to be biased if its power is
less than its size for some θ ∈ Θ1.

• Neyman-Pearson Lemma: For simple
hypotheses H0 : θ = θ0 vs. H1 : θ = θ1,

the most powerful level α test rejects H0

when Λ(x) = f(x,θ1)
f(x,θ0)

> k for some k such

that E0[ϕ(X)] = P0(Λ(x) > k) = α. This
test does not depend on θ1, can be used for
composite H1, making it the UMP test.

• Confidence set: Map S(X) such that
P (θ0 ∈ S(X)) ≥ C for all θ0 ∈ Θ. The
level is C. The random set contains the
true parameter with probability at least C.
Can be constructed by inverting a family of
α = 1− C tests: S(X) = {θ : ϕ(x, θ) = 0}.

• Log-likelihood ratio test ξLR =

2
[
logL(θ̂)− logL(θ0)

]
. Under regularity

conditions, if H0 is true, ξLR
d−→ χ2

k where
k is the dimension of θ.

• Wald test ξW =
√
n(θ̂ −

θ0)
′
(
− 1

n
∂2 logL(θ̂)

∂θ∂θ′

)−1 √
n(θ̂ − θ0). Un-

der regularity conditions, if H0 is true,

ξW
d−→ χ2

k where k is the dimension of θ.
• Lagrange multiplier test: ξLM =

1√
n
S(θ0)

′
(
− 1

n
∂2 logL(θ0)

∂θ∂θ′

)−1
1√
n
S(θ0). Un-

der regularity conditions, if H0 is true,

ξLM
d−→ χ2

k where k is the dimension of θ.
• Asymptotically, ξLR, ξW , ξLM are equiva-

lent.

Bayes
• Prior distribution π(θ) represents beliefs

about θ before seeing data. Prior is conju-
gate if posterior is in same family as prior.

• Posterior distribution π(θ|x) =
f(x|θ)π(θ)∫
f(x|θ)π(θ)dθ

.

• Bayes action: a∗ = argmina

∫
L(θ, a)π(θ|x)dθ.

Estimation is a special case with action
space Θ and the loss typically squared error
or absolute error. Testing is a special case
with action space {0, 1} and loss matrix
L(θ, a).

• Credible sets are Bayesian analog of con-
fidence sets. A 100% credible set S(x) sat-
isfies P (θ ∈ S(x)|x) = C.

• Complete class theorem: Under mild
regularity conditions, every admissible deci-
sion rule is a Bayes rule or a limit of Bayes
rules.
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