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Notation & Useful Facts

Uncentered 2nd Moments: Matrices
A,B: Sap ¥ E[AB]

Sample 2nd Moments: Matrices A, B:

Sap LY aib;

Sample average: ad—fl o a
BLP: E[Y|X = z] = xﬁ, where 8 =
argmin, E[(Y — X'b)?] = 23\ Oxvy.

Model: y; = Elyi|z:] + vi — Elys|z:] =
258 + €;. Stack this: Y = X + ¢, where Y
vector n, X matrix n X k, € vector n.

Px = X(X'X)"'X' : P\ = Px,P%
Px, rank/trace k, eigenvalues 0 or 1.
PxX =X.

Mx = I, — Px : My = Mx,M%
Mx, rank/trace n — k, eigenvalues 0
1. MxX =0 — MXPXA:CL

Residual: ¢ = YV — X8 = MxY =
Mxe=e+z(8—p)

Fit Y = PxY

SSR = ¢¢é = Y'Y —Y'PxY,ESS =

V'Y =Y'PxY, TSS =Y'Y = SSR+ESS
R-squared: R? = % =1- %, R?
- 2 (- R?)

FWL: For Y = X151 + Xaf2 + ¢, i =
(XiMx,; X;) ' X{Mx,Y, for i # j €
{1,2}.

B (X'X)'X'(XB + e B+
(X' X))~ X'¢, useful for unbiased and cons.
Moment function: g; = zie; = zi(y: —
z53), E[g;] = 0 at BLP 8.

Approx. Dist: If \/n( — 6) 4, N(0,V),
then 6 L N 6,Lv).

e Lagrangian: For maxy f(0) s.t. ¢g(0) =0,
L) = [(9) + Ag(0).
N & Related Distributions
¢ MVN X € R MVN <«— aX

is univariate normal ¥V 0 # a € RP.
Write X Np (i, 2. x (2 )

~

(2m) /25| 1/ZQXID(**(»E*M)E =)
if rank(X) = p. Then E[d'X] = d'p,
Var[a’X] = a'Sa, Mx(a) = E[e* ] =
exp(a’p + 1a'Sa).

Linear map (A): X ~N,(11, %), Y =n+

BX (Biskxp) =Y ~ Ni(n+Bu, BLB’).
Density (B): if rank(X) = p, fx(z) =
(2) P[5/ exp(~ 3 (2 — p)' S o — )
Independent N's (C): X1 ~ Np(p1,%1),
X2 ~Nq(,u2,22), X1 1 X2 = (X{,Xé)/ ~

¥ 0
Moo (G2 (5 )):
Sums (F): X; L Xo, Xi ~ Np(ui, %)
= X1+ Xo ~ Np(p1 + p2, 31 + o).
Partition: X = (X1, X3), u = (ui, us)’,
5 (211 212)
Mo1 Yoo )’

— Marginal (G): X1 ~ N (1, 311).

- COIld. (D): (X1|X2 1‘2)
N(,LL1 +A, B) W/ A = 2122;21($2 —
pe), B =11 — L1225, Doy

— Indep (H): Y12 =0 <— X; 1L Xo.

Indep. of lin. comb. (I): X ~ N,(, %),

B eRP** C e RP*™: B'X 1L C'X «—

B'SC =0.

Converse construction (E): if X ~

N(,LLQ,EQQ) and X1‘X2 To ~ N(A +

Bz, Q) (constant A, B,Q), then (X7, X3)’

is MVN with g = (A + Bus, p2) and

Var X1\ _ (BX22B'+Q B
X Yoo B’ Yoo )

Quadratic form: Y’AY; WLOG take
A=A

Orthonormal projection: if Z
N(0,1I,) and P € R**™ with P'P = I,
then P'Z ~ N(0,I,) and Z'PP'Z ~ x2,.
Mahalanobis (J): if X ~ N,(u, ),
ra(3) = p, then (X — p)’ 571X — p) ~ x5
Idempotent (K): if Z ~ N(0,1I,) and
M? = M with ra(M) = k, then Z'MZ ~
Xi-

Independence (L): X = PZ, Q= Z'AZ,
and PA=0= X 1 Q.

Independence (M): Q1 = Z'A1Z, Q2 =
ZIAQZ, and AlAQ = O = Ql A Q2-

~

~

Normal OLS Finite-Sample

Assumptions: (1) iid. sample, (2)
ylz ~ N(z'B,07), (3) X full rank a.s., (4)
fx(z) L B,0%. These imply homoskedas-
ticity.

c f,X) = [fYIX)f(X)
(02)771/2 exp( 202 (Y — XB) (Y—XB))
,BMLE argmaxg 5(5» |Y X)
(X X)TIX'Y = S35 Sxy —> ZXXEXY

1eil g, =8 s

SEE=
&l ﬁ,ﬁ ~ N(B.V5)

U'MLE 6% =
Var[ﬂ|X] e

X'X)
62 biased. Unbiased: s* = -£5. Var[6?] =
2 4
Var (2 (358)] = 25 (n - k) « SP =

(;e) Mx (%e) ~x2_, = Var[s?] = %‘

B L 62, since (X'X)"'X'Mx = 0. This
allows for t-tests and F-tests.

F-Stat. A = % ~ x% and B =
Alk
SSR N2, = F 73/(7{ 5~ Frnk

and F = B-8) (X2X)(5 B)
ks
_ B(X'X)B(n—k)
F= SSRk ~ SSR ™ k&
Bi—B; A
t-Stat. ¢t = SE(BJJ) ~ tn_k, where SE(5;)
is the sqrt of j-th diagonal element of
(X’X)*1
(,8, ) = Bure efﬁment E[o?] #
0% = 62,5 not efficient. s? unbiased w/
Var[s®] = —2.-0?, asymptotically efficient.
B: f(8,0°|Y,X) o< L(B,0°|Y,X)n(B,0?).

Joint posteriors can be derived numerically

~ Fkynfk and
_ ESS (n—k)

~ Fyn—k
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by drawing o2 prior, then drawing 3 condi-
tional on o2 and repeating many times.
w/o normality: (1) iid. sample, (2)

Elylz] = z'8, (3) X full rank a.s., (4)
Var [y|z] = o?.

EBX] = B, V: [5|X] = (X' X)),
E[6?] = k42 E[s ] =0o°

Gauss-Markov: With Ely|lz] = 2’8 and
Var [y|z] = o?, OLS is the BLUE of f.
Proof: Any LUE 8 = CY with CX = Ij.
D = C - (X'X)™'X’, then DX = 0.
Then, Var [B|X} — Var [B|X} =o?(CC -
(X'X)™h o>(DD' + DX(X'X)™* +
(X'X)"Y(XD)") = 0>DD’ > 0, Since DD’
is PSD for any D.

GLS: If Var[e|X] = ¢°Q, then Bgrs =
(X'Q X)) X'Q7 Y. Prove by Q = HH',
transform model by H~!, then apply OLS
— efficiency, unbiasedness, cons. etc.

OLS Asymptotic Properties

Assumptions: (1) iid. sample, (2)
B =3xX"'Txy is BLP and Zxx is non-
singular, (3) fourth moments exist for (y, x).
These imply E[ze] = E[g] = 0 and existance
of ¥4y = Var [g] = E[¢*z2/].
Properties:: f — S8 Sy a

4 2 B by WLLN. \/ﬁ(B—ﬂ)
Sk =S, 9 5 N(O,V) with V
Z)_(lnggz;(x by Lindeberg-Feller CLT and
Slutsky’s theorem. Hence, 8 & N (B,LVv).

Wald: (5—5) (Lv)- (ﬂ—ﬁ) 4 X

5 < RB, then n(RB — &)’ (RVR’)*(RB -

=

(B;—8;)
§) L2, ;jund T 4, N(0,1), holds
f9r cons. V A
V : Under homoskedasticity ¥,4 = 628x X,

then V =6*(X'X)"" % V, by WLLN.
Huber-White \%& zgg LS & wal,
then V =S54 3,055k & V, by WLLN.

Misc OLS/Causality

Nonlinear functions can be handled by
adding quadratic terms to the regresion
equation.

OVB: True B1 ﬂ> 51 =+ Z;(iXIEXleﬁQ'
No OVB if 82 = 0 (irrelevant variable) or
Y x,x, = 0 (exogenous variable).
Multicol.: When X nearly singular
Var [B] increases drastically.

Cluster SE Zgg =3 Zc 19c9c W/ Je =
le D ice Tibi = V= SXXEggS;(X — V.
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ATE(X): X L1 (Y(1),Y(0) =
E[T] = E[Y(1)] — E[Y(0)]. Using OLS:
E[Y|X = z] = E[Y(0)] 4+ zE[T] + ¢, where

X 1L (Y(1),Y(0)) < E[¢X] = 0.
When x is continous, interpret
E[T] as marginal effect. When
X 1 (Y(1),Y(0))|Z, incl. Z in model (if

8g[ZT] = 0) and incl. interac. (if BE[ZT] #0),
Var[Y(1)] +

derive coef. via FWL. Var [T
Var [Y(0)] — 2 Cov [Y (1), Y (0)].

Var[Y(1) - Y(0)] =

GMM/IV

GMM relies on E[g;(0)] = 0, where g¢;(0) is
vector function of data and param. Given
data, can solve for # by minimizing 6 =
arg ming g(0)' Wg(0), W/ W PSD weights
and g(0) = 3" | gi(6). Sometimes use-
ful to incl. scahng factor in objective fn.

IV y, =20 +e€, 2z =x;f+vi, w/ z; £x1

E[ze] = E[g] = 0, (A3) rel. moments exist
and E[g'g] = Z,9, (A4) xz rank /.
L=k

Srv = SXZSXY =06+ Sx,3.

Cons. g—>0 e 51\/—>5

AN V(v —8) = Sxbvag 5 N(0, V;)
Vs = Exlzzggz)_(z E =
LS Eair; L Sy, then VS =
S)?lzi:ggs)?lz = Vs

£>k

Derrived by arg ming J(d) = ng(d)'Wg(d)
drv = (SzxWSxz) 'SxzWSxy = & +
(SZXxSXz)ilsxzwg.

Cons. §£>0$5£>5.

o AN /n(6 —8) % N(0, V),

o Vi =(EzxWixz)~

1(2xzwzgngzx)
(SzxWSxz)™, B9 = 230 Emia
Vé = (SzwaXz)_l(szwEggWSZx)
(SZXwSXz)_ —>V5

Wopt = Egglv V (SZXE;QISXZ)il‘
J-Test: J(8) = ng(8)Wg(6) L X3 4, w/
W 2 W. Test assumption E[g;] = 0.

Misc IV

2SLS: Under homosk. Var[g] = Yxx =
basrs = (Z'PxZ)"'Z'PxY, derived via
opt GMM or 2SLS. Control fn approach:
add first stage residuals to 2nd stage regres-
sion.
Weak instruments: First stage ' < 10
or t < /10 = 3.16 = weak instruemnt.
Local-to-zero asymptotics: 71 — dofta ~
N (7T1 — 5071'2,77,71(0'% + (580’5 — 2(500’12)) —
g: 2n(%2172507}2>72 )
01+6002—250012
AR reformulation: y — 200 = 2(§ — do) +
e =uxy+e, test Hy : 6 = do via OLS of
y — zdp on z, Cls formed by inverting test.
LATE: With model y = 2;0; + €, z; =

reject for large £.
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N Pr T4
T + v, 0y = EAk

Never-takers (m; = 0) and always-takers
(mi = 0) get weight 0, compliers and defiers
get |w;| > 0. Defiers ruled out by mono-
tonicity assumption.

Time Series

Autocovariance X\ = Cov [V, Yii],

Atk
At ”

Covariance stationarity <= E[Y;] =
ue = poand Ak = Cov Yz, Yimg] = AV ¢
Implies: A\x = A—g, YV, pt.x = Pt = p—k-

Y: is white noise if 4 = 0 and M\ =
ov |kl > o Y: is Martingale if
E[Y:|Q%-1] = Yi—1, Martingale differ-
ence (md) if E[Y;|Q:—1] = 0, where Q;_1
is information set at t — 1. Y; is random
walk if Y; — Y:_1 is white noise.

AR(1) Y2 = oYi1 + et, Where € ~

iid(0,0‘2). At,o = ¢2t08 + 1 ¢2 2V|¢‘ #1,
Ao = 0% + ta® for |¢| = 1, w = ¢'po.
AR(1) is time invariant if |¢] < 1 and Lo =

Autocorrelation p; ; =

2 . k
0, of = 1‘17 These imply ¢ x = 1f¢2 o2
and pi, = ¢F.
VAR(1) Y: = ®Y;_1+€:, where Y is mx 1,

D is m x m, ¢ ~ d(0,X). VAR(1) is
time invariant if all eigenvalues of ® have
abs. value < 1 and puo = 0, Ao solves
AO = CI)AOq)/ + Y and vec Ao =
AR(p) analyzed as VAR(1), where Z, =
Ve, Vi1, ..., Yicpy1]', @ is p x p w/ first
row [¢1, @2, . .., ¢p] and subdiagonal of ones,
and e; = [€:,0,...,0] = Z; = ®Z;_1 + et.
Stationarity see above. E[Z;] = 7%
i=1 i
ifY,=c+ 370 Y i + e
Yule-Walker Equations: For cov. sta-
tionary AR(p), A\e = >0, didn—i + o? for
k= 07 and )\k = Zle ¢z>\k—z for k 2 1.
L is lag operator, LY; = Y;_1, L*Y; = Yi_4.

AR(p): #(L)Y; = €, where ¢(L) = 1 —
&1L — ¢oL? — ... — ¢pLP.
MA(q) Yt = €t — 916t71 — ... — Othfq7

where €; ~ id(0,0?). In lag operator: Y; =
0(L)et, where (L) =1 —6:L — ... — 04L1.
E[Y,] = 0,Var[|Vi] = o*(1 + 327, 67),
A =02 (=0 + 30F 0:0i40) for 0 < k < g,
A = 0 for K > g = cov. stationarity. In-
vertible if roots of 8(L) = 0 lie outside unit
circle.

ARMA (p,q) ¢(L)Y; = 0(L)e;. Cov. sta-
tionarity if roots of ¢(L) = 0 lie outside unit
circle. Invertible if roots of #(L) = 0 lie
outside unit circle. ARIMA(p,q,d) X: ~
ARMA (p,q) then X; = (1—L)?Y; and Y; ~
ARIMA (p,q,d).

‘Wold’s Theorem: A covariance stationary
process Y; can be written as Y; = 6(L)e; for
some O(L) with roots outside unit circle and
€ ~ d(0, 0%).

e Ergodicity ~ elements are asymptotically

independent. Ergodic Theorem If {z;}
is ergodic and stationary with E[z;] = p,

then L 37 2 % p. If 2 ergodic, then
2+ = f(z¢) is ergodic for any measurable f.
MDS CLT If mds {z:} is ergodic and sta-
tionary with E[z;] = u and Var [[] z;] = o2,
then % S (2 —p) 4 N(0,0?).
Linear Model w/ serial cor. Assump-
tions (1) Y = XB+¢ (2) {y:, z:} stationary
and ergodic (3) E[e;x¢] = E[g¢] = 0 (4) Mo-
ments exist with ¥ x x non-singular (5) {g:}
is mds with E[g:g;] = Zgq.

Properties under (1)-(5), 3 & 3 and
VT3 — 8) % N(O,V) with V =

E}XZQQE;(X Suppose Ygg & Tgg, then
V= Sx E ¢Sx —>V
Testing t;. = (\/>( ))/ ( )y] 4

) LN x2,, where Ris m x k for Hy : RB = 7.
2 25 Finoo

Assume E[(z4,:1,5)%] < oo Vi,5 + (1)-(5),
then S;5 2 %0, where §; = &y =

(ye — B'we)a



