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Notation & Useful Facts
• Uncentered 2nd Moments: Matrices

A,B: ΣAB
def
= E[AB]

• Sample 2nd Moments: Matrices A,B:

SAB
def
= 1

n

∑n
i=1 aibi

• Sample average: ā
def
= 1

n

∑n
i=1 ai

• BLP: E[Y |X = x] = x′β, where β =
argminb E[(Y −X ′b)2] = Σ−1

XXΣXY .
• Model: yi = E[yi|xi] + yi − E[yi|xi] =

x′
iβ + ϵi. Stack this: Y = Xβ + ϵ, where Y

vector n, X matrix n× k, ϵ vector n.

• PX = X(X ′X)−1X ′ : P ′
X = PX , P 2

X =
PX , rank/trace k, eigenvalues 0 or 1.
PXX = X.

• MX = In − PX : M ′
X = MX ,M2

X =
MX , rank/trace n − k, eigenvalues 0 or
1. MXX = 0 =⇒ MXPX = 0.

• Residual: ϵ̂ = Y − Xβ̂ = MXY =
MXϵ = ϵ+ x(β − β̂)

• Fit Ŷ = PXY
• SSR = ϵ̂′ϵ̂ = Y ′Y − Y ′PXY,ESS =

Ŷ ′Ŷ = Y ′PXY,TSS = Y ′Y = SSR+ESS
• R-squared: R2 = ESS

TSS
= 1 − SSR

TSS
, R̄2 =

1− n
n−k

(1−R2)

• FWL: For Y = X1β1 + X2β2 + ϵ, β̂i =
(X ′

iMXjXi)
−1X ′

iMXjY , for i ≠ j ∈
{1, 2}.

• β̂ = (X ′X)−1X ′(Xβ + ϵ) = β +
(X ′X)−1X ′ϵ, useful for unbiased and cons.

• Moment function: gi = xiϵi = xi(yi −
x′
iβ), E[gi] = 0 at BLP β.

• Approx. Dist: If
√
n(θ̂ − θ)

d−→ N (0, V ),

then θ̂
a∼ N

(
θ, 1

n
V
)
.

• Lagrangian: For maxθ f(θ) s.t. g(θ) = 0,
L(θ, λ) = f(θ) + λg(θ).

N & Related Distributions

• MVN X ∈ Rp MVN ⇐⇒ a′X
is univariate normal ∀ 0 ̸= a ∈ Rp.
Write X ∼ Np(µ,Σ). fX(x) =
(2π)−p/2|Σ|−1/2 exp

(
− 1

2
(x− µ)′Σ−1(x− µ)

)
if rank(Σ) = p. Then E[a′X] = a′µ,

Var[a′X] = a′Σa, MX(a) = E[ea
′X ] =

exp(a′µ+ 1
2
a′Σa).

• Linear map (A): X ∼ Np(µ,Σ), Y = η +
BX (B is k×p) ⇒ Y ∼ Nk(η+Bµ, BΣB′).

• Density (B): if rank(Σ) = p, fX(x) =
(2π)−p/2|Σ|−1/2 exp

(
− 1

2
(x− µ)′Σ−1(x− µ)

)
.

• Independent N s (C): X1 ∼ Np(µ1,Σ1),
X2 ∼ Nq(µ2,Σ2), X1 ⊥⊥ X2 ⇒ (X ′

1, X
′
2)

′ ∼

Np+q

((
µ1
µ2

)
,

(
Σ1 0
0 Σ2

))
.

• Sums (F): X1 ⊥⊥ X2, Xi ∼ Np(µi,Σi)
⇒ X1 +X2 ∼ Np(µ1 + µ2,Σ1 +Σ2).

• Partition: X = (X ′
1, X

′
2)

′, µ = (µ′
1, µ

′
2)

′,

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

– Marginal (G): X1 ∼ N (µ1,Σ11).

– Cond. (D): (X1|X2 = x2) ∼
N (µ1 +A, B) w/ A = Σ12Σ

−1
22 (x2 −

µ2), B = Σ11 − Σ12Σ
−1
22 Σ21.

– Indep (H): Σ12 = 0 ⇐⇒ X1 ⊥⊥ X2.
• Indep. of lin. comb. (I): X ∼ Np(µ,Σ),

B ∈ Rp×k, C ∈ Rp×m: B′X ⊥⊥ C′X ⇐⇒
B′ΣC = 0.

• Converse construction (E): if X2 ∼
N (µ2,Σ22) and X1|X2 = x2 ∼ N (A +
Bx2,Ω) (constant A,B,Ω), then (X ′

1, X
′
2)

′

is MVN with µ = (A+Bµ2, µ2) and

Var

(
X1

X2

)
=

(
BΣ22B

′ +Ω BΣ22

Σ22B
′ Σ22

)
.

• Quadratic form: Y ′AY ; WLOG take
A = A′.

• Orthonormal projection: if Z ∼
N (0, In) and P ∈ Rn×m with P ′P = Im,
then P ′Z ∼ N (0, Im) and Z′PP ′Z ∼ χ2

m.
• Mahalanobis (J): if X ∼ Np(µ,Σ),

ra(Σ) = p, then (X − µ)′Σ−1(X − µ) ∼ χ2
p.

• Idempotent (K): if Z ∼ N (0, Ip) and
M2 = M with ra(M) = k, then Z′MZ ∼
χ2
k.

• Independence (L): X = PZ, Q = Z′AZ,
and PA = 0 ⇒ X ⊥⊥ Q.

• Independence (M): Q1 = Z′A1Z, Q2 =
Z′A2Z, and A1A2 = 0 ⇒ Q1 ⊥⊥ Q2.

Normal OLS Finite-Sample

• Assumptions: (1) i.i.d. sample, (2)
y|x ∼ N (x′β, σ2), (3) X full rank a.s., (4)
fX(x) ⊥⊥ β, σ2. These imply homoskedas-
ticity.

• L : f(Y,X) = f(Y |X)f(X) ∝(
σ2
)−n/2

exp
(
− 1

2σ2 (Y −Xβ)′(Y −Xβ)
)

• β̂MLE = argmaxβ L(β, σ2|Y,X) =

(X ′X)−1X ′Y = S−1
XXSXY

p−→ Σ−1
XXΣXY

• σ̂2
MLE : σ̂2 = 1

n
ϵ̂′ϵ̂ = Sϵ̂ϵ̂ =

SSR
n

• Var[β̂|X] = σ2

(X′X)

def
= Vβ̂ , β̂ ∼ N (β, Vβ̂)

• σ̂2 biased. Unbiased: s2 = ϵ̂′ ϵ̂
n−k

. Var[σ̂2] =

Var
[
σ2

n

(
SSR
σ2

)]
= 2σ4

n2 (n − k) ⇐ SSR
σ2 =(

1
σ
ϵ
)′
MX

(
1
σ
ϵ
)
∼ χ2

n−k ⇒ Var[s2] = 2σ4

n−k
.

• β̂ ⊥⊥ σ̂2, since (X ′X)−1X ′MX = 0. This
allows for t-tests and F-tests.

• F-Stat. A =
(β̂−β)′(β̂−β)
(σ2(X′X)−1)

∼ χ2
k and B =

SSR
σ2 ∼ χ2

n−k =⇒ F = A/k
B/(n−k)

∼ Fk,n−k

and F = (β̂−β)′(X′X)(β̂−β)

ks2
∼ Fk,n−k and

F = β̂′(X′X)β̂(n−k)
SSRk

= ESS
SSR

(n−k)
k

∼ Fk,n−k

• t-Stat. t =
β̂j−βj

SE(β̂j)
∼ tn−k, where SE(β̂j)

is the sqrt of j-th diagonal element of
s2(X ′X)−1.

• I(β, σ2) =⇒ β̂MLE efficient. E[σ2] ̸=
σ2 =⇒ σ̂2

MLE not efficient. s2 unbiased w/
Var[s2] = 2

n−k
σ2, asymptotically efficient.

• B: f(β, σ2|Y,X) ∝ L(β, σ2|Y,X)π(β, σ2).
Joint posteriors can be derived numerically

by drawing σ2 prior, then drawing β condi-
tional on σ2 and repeating many times.

• w/o normality: (1) i.i.d. sample, (2)
E[y|x] = x′β, (3) X full rank a.s., (4)
Var [y|x] = σ2.

• E[β̂|X] = β, Var[β̂|X] = σ2(X ′X)−1,
E[σ̂2] = n−k

n
σ2, E[s2] = σ2.

• Gauss-Markov: With E[y|x] = x′β and
Var [y|x] = σ2, OLS is the BLUE of β.
Proof: Any LUE β̃ = CY with CX = Ik.
D := C − (X ′X)−1X ′, then DX = 0.

Then, Var
[
β̃|X

]
− Var

[
β̂|X

]
= σ2(CC′ −

(X ′X)−1) = σ2(DD′ + DX(X ′X)−1 +
(X ′X)−1(XD)′) = σ2DD′ ≥ 0, Since DD′

is PSD for any D.
• GLS: If Var [ϵ|X] = σ2Ω, then β̂GLS =
(X ′Ω−1X)−1X ′Ω−1Y . Prove by Ω = HH ′,
transform model by H−1, then apply OLS
=⇒ efficiency, unbiasedness, cons. etc.

OLS Asymptotic Properties
• Assumptions: (1) i.i.d. sample, (2)

β = ΣXX−1ΣXY is BLP and ΣXX is non-
singular, (3) fourth moments exist for (y, x).
These imply E[xϵ] = E[g] = 0 and existance
of Σgg = Var [g] = E[ϵ2xx′].

• Properties:: β̂ − β = S−1
XX ḡ =⇒

β̂
p−→ β by WLLN.

√
n
(
β̂ − β

)
=

S−1
XX

1√
n

∑n
i=1 gi

d−→ N (0, V ) with V =

Σ−1
XXΣggΣ

−1
XX by Lindeberg-Feller CLT and

Slutsky’s theorem. Hence, β̂
a∼ N

(
β, 1

n
V
)
.

• Wald:
(
β̂ − β

)′
( 1
n
V )−1

(
β̂ − β

)
d−→ χ2

k.

δ
def
= Rβ, then n(Rβ̂ − δ)′(RV R′)−1(Rβ̂ −

δ)
d−→ χ2

m and
(β̂j−βj)√
n−1(V )jj

d−→ N (0, 1), holds

for cons. V̂
• V̂ : Under homoskedasticity Σ̂gg = σ̂2SXX ,

then V̂ = σ̂2(X ′X)−1 p−→ V , by WLLN.
• Huber-White V̂ : Σ̂gg = 1

n

∑n
i=1 ϵ̂

2
ixix

′
i,

then V̂ = S−1
XXΣ̂ggS

−1
XX

p−→ V , by WLLN.

Misc OLS/Causality
• Nonlinear functions can be handled by

adding quadratic terms to the regresion
equation.

• OVB: True β̂1
p−→ β1 + Σ−1

X1X1
ΣX1X2β2.

No OVB if β2 = 0 (irrelevant variable) or
ΣX1X2 = 0 (exogenous variable).

• Multicol.: When X nearly singular

Var
[
β̂
]
increases drastically.

• Cluster SE Σ̂gg = 1
C

∑C
c=1 ĝcĝ

′
c w/ ĝc =

1
n

∑
i∈c xiϵ̂i =⇒ V̂ = S−1

XXΣ̂ggS
−1
XX

p−→ V .

1
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• ATE(X): X ⊥⊥ (Y (1), Y (0)) =⇒
E[T ] = E[Y (1)] − E[Y (0)]. Using OLS:
E[Y |X = x] = E[Y (0)] + xE[T ] + ϵ, where
X ⊥⊥ (Y (1), Y (0)) ⇐⇒ E[ϵ|X] = 0.
When x is continous, interpret
E[T ] as marginal effect. When
X ⊥⊥ (Y (1), Y (0))|Z, incl. Z in model (if
∂E[T ]
∂Z

= 0) and incl. interac. (if ∂E[T ]
∂Z

̸= 0),
derive coef. via FWL. Var [T ] =
Var [Y (1)− Y (0)] = Var [Y (1)] +
Var [Y (0)]− 2Cov [Y (1), Y (0)].

GMM/IV
• GMM relies on E[gi(θ)] = 0, where gi(θ) is

vector function of data and param. Given
data, can solve for θ by minimizing θ̂ =
argminθ ḡ(θ)

′Wḡ(θ), w/ W PSD weights
and ḡ(θ) = 1

n

∑n
i=1 gi(θ). Sometimes use-

ful to incl. scaling factor in objective fn.

• IV yi = z′iδ+ ϵi, zi = x′
iβ+ vi, w/ zi ℓ×1

& xi k × 1. (A1) (yi, zi, xi) i.i.d., (A2)
E[xϵ] = E[g] = 0, (A3) rel. moments exist
and E[g′g] = Σgg, (A4) ΣXZ rank ℓ.

ℓ = k

• δ̂IV = S−1
XZSXY = δ + S−1

XZ ḡ.

• Cons. ḡ
p−→ 0 =⇒ δ̂IV

p−→ δ

• AN
√
n(δ̂IV − δ) = S−1

XZ

√
nḡ

d−→ N (0, Vδ̂)

• Vδ̂ = Σ−1
XZΣggΣ

−1
XZ . Σ̂gg =

1
n

∑n
i=1 ϵ̂

2
ixix

′
i

p−→ Σgg, then V̂δ̂ =

S−1
XZΣ̂ggS

−1
XZ

p−→ Vδ̂.

ℓ > k

• Derrived by argmind J(d) = nḡ(d)′Wḡ(d)
• δ̂IV = (SZXWSXZ)

−1SXZWSXY = δ +
(SZXXSXZ)

−1SXZWḡ.

• Cons. ḡ
p−→ 0 ⇒ δ̂

p−→ δ.

• AN
√
n(δ̂ − δ)

d−→ N (0, Vδ̂),
• Vδ̂ = (ΣZXWΣXZ)

−1(ΣXZWΣggWΣZX)

(ΣZXWΣXZ)
−1, Σ̂gg = 1

n

∑n
i=1 ϵ̂

2
ixix

′
i,

V̂δ̂ = (SZXWSXZ)
−1(SXZW Σ̂ggWSZX)

(SZXWSXZ)
−1 p−→ Vδ̂.

• Wopt = Σ−1
gg , V̂opt = (SZXΣ̂−1

gg SXZ)
−1.

• J-Test: J(δ̂) = nḡ(δ̂)′Ŵ ḡ(δ̂)
d−→ χ2

ℓ−k, w/

Ŵ
p−→ W . Test assumption E[gi] = 0.

Misc IV

• 2SLS: Under homosk. Var [g] = σ2ΣXX ⇒
δ̂2SLS = (Z′PXZ)−1Z′PXY , derived via
opt GMM or 2SLS. Control fn approach:
add first stage residuals to 2nd stage regres-
sion.

• Weak instruments: First stage F < 10
or t <

√
10 = 3.16 ⇒ weak instruemnt.

Local-to-zero asymptotics: π̂1 − δ0π̂2 ∼
N
(
π1 − δ0π2, n

−1(σ2
1 + δ20σ

2
2 − 2δ0σ12)

)
=⇒

ξ̃ = n(π̂1−δ0π̂2)
2

σ2
1+δ20σ

2
2−2δ0σ12

, reject for large ξ̃.

• AR reformulation: y − zδ0 = z(δ − δ0) +
ϵ = xγ + e , test H0 : δ = δ0 via OLS of
y − zδ0 on x, CIs formed by inverting test.

• LATE: With model y = ziδi + ϵi, zi =

xiπi + vi, δ̂IV
p−→ E[wiδi] w/ wi = πi

E[πi]
.

Never-takers (πi = 0) and always-takers
(πi = 0) get weight 0, compliers and defiers
get |wi| > 0. Defiers ruled out by mono-
tonicity assumption.

Time Series
• Autocovariance λt,k = Cov [Yt, Yt−k],

Autocorrelation ρt,k =
λt,k

λt,t
.

• Covariance stationarity ⇐⇒ E[Yt] =
µt = µ and λt,k = Cov [Yt, Yt−k] = λk∀ t.
Implies: λk = λ−k, ∀t, ρt,k = ρk = ρ−k.

• Yt is white noise if µ = 0 and λk =
0∀ |k| > 0. Yt is Martingale if
E[Yt|Ωt−1] = Yt−1, Martingale differ-
ence (md) if E[Yt|Ωt−1] = 0, where Ωt−1

is information set at t − 1. Yt is random
walk if Yt − Yt−1 is white noise.

• AR(1) Yt = ϕYt−1 + ϵt, where ϵt ∼
iid(0, σ2). λt,0 = ϕ2tσ2

0 + 1−ϕ2

1−ϕ2 σ
2∀|ϕ| ̸= 1,

λt,0 = σ2
0 + tσ2 for |ϕ| = 1, µt = ϕtµ0.

AR(1) is time invariant if |ϕ| < 1 and µ0 =

0, σ2
0 = σ2

1−ϕ2 . These imply λt,k = ϕk

1−ϕ2 σ
2

and ρk = ϕk.
• VAR(1) Yt = ΦYt−1+ϵt, where Yt is m×1,

Φ is m × m, ϵt ∼ iid(0,Σ). VAR(1) is
time invariant if all eigenvalues of Φ have
abs. value < 1 and µ0 = 0, Λ0 solves
Λ0 = ΦΛ0Φ

′ +Σ and vecΛ0 =
• AR(p) analyzed as VAR(1), where Zt =

[Yt, Yt−1, . . . , Yt−p+1]
′, Φ is p × p w/ first

row [ϕ1, ϕ2, . . . , ϕp] and subdiagonal of ones,
and et = [ϵt, 0, . . . , 0]

′ ⇒ Zt = ΦZt−1 + et.
Stationarity see above. E[Zt] =

c
1−

∑p
i=1 ϕi

if Yt = c+
∑p

i=1 ϕiYt−i + ϵt.
• Yule-Walker Equations: For cov. sta-

tionary AR(p), λk =
∑p

i=1 ϕiλk−i + σ2 for
k = 0, and λk =

∑p
i=1 ϕiλk−i for k ≥ 1.

• L is lag operator, LYt = Yt−1, L
kYt = Yt−k.

AR(p): ϕ(L)Yt = ϵt, where ϕ(L) = 1 −
ϕ1L− ϕ2L

2 − . . .− ϕpL
p.

• MA(q) Yt = ϵt − θ1ϵt−1 − . . . − θqϵt−q,
where ϵt ∼ iid(0, σ2). In lag operator: Yt =
θ(L)ϵt, where θ(L) = 1− θ1L− . . .− θqL

q.
E[Yt] = 0,Var [[]Yt] = σ2(1 +

∑q
i=1 θ

2
i ),

λk = σ2(−θk +
∑q−k

i=1 θiθi+k) for 0 ≤ k ≤ q,
λk = 0 for k > q ⇒ cov. stationarity. In-
vertible if roots of θ(L) = 0 lie outside unit
circle.

• ARMA(p,q) ϕ(L)Yt = θ(L)ϵt. Cov. sta-
tionarity if roots of ϕ(L) = 0 lie outside unit
circle. Invertible if roots of θ(L) = 0 lie
outside unit circle. ARIMA(p,q,d) Xt ∼
ARMA(p,q) then Xt = (1−L)dYt and Yt ∼
ARIMA(p,q,d).

• Wold’s Theorem: A covariance stationary
process Yt can be written as Yt = θ(L)ϵt for
some θ(L) with roots outside unit circle and
ϵt ∼ iid(0, σ2).

• Ergodicity ≈ elements are asymptotically
independent. Ergodic Theorem If {zt}
is ergodic and stationary with E[zt] = µ,

then 1
T

∑T
t=1 zt

p−→ µ. If zt ergodic, then
xt = f(zt) is ergodic for any measurable f .

• MDS CLT If mds {zt} is ergodic and sta-
tionary with E[zt] = µ and Var [[] zt] = σ2,

then 1√
T

∑T
t=1(zt − µ)

d−→ N (0, σ2).

• Linear Model w/ serial cor. Assump-
tions (1) Y = Xβ+ε (2) {yt, xt} stationary
and ergodic (3) E[εtxt] = E[gt] = 0 (4) Mo-
ments exist with ΣXX non-singular (5) {gt}
is mds with E[gtg′t] = Σgg.

• Properties under (1)-(5), β̂
p−→ β and√

T (β̂ − β)
d−→ N (0, V ) with V =

Σ−1
XXΣggΣ

−1
XX . Suppose Σ̂gg

p−→ Σgg, then

V̂ = S−1
XXΣ̂ggS

−1
XX

p−→ V .

• Testing tj . =
(√

T (β̂j − βj)
)
/
√

(V̂β̂)jj
d−→

N (0, 1), ξW = T (Rβ̂ − r)′(RV R′)−1(Rβ̂ −
r)

d−→ χ2
m, where R is m×k for H0 : Rβ = r.

ξW
m

d−→ Fm,∞
• Assume E[(xt,ixt,j)

2] < ∞ ∀i, j + (1)-(5),

then Sĝĝ
p−→ Σgg, where ĝt = ε̂txt =

(yt − β̂′xt)xt.

2


