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1 Hypothesis Testing & Inference

1.1 Null-Hypotheses

Null-hypothesis (Hy), usually Hy : S = 0, where
8 = population parameter of interest. Alternative
hypothesis (H,), can be two-sided (H, : 8 # 0),
one-sided (H, : > 0or H, : 5 <0).

1.2 T-Test
The T-statistic compares B to it’s estimated sam-
pling variability, @(ﬁ) In OLS,

A S (Y - Yi)?
SE(B) = \/(n—k— 1) -3 (x; — 7)?

given a fy (under the null), the T-statistic is then

(and always) calculated by

r=£_7
E(5

n

Usually, By = 0.

1.3 p-values

In OLS, we compare T' the T-distribution w/ df =
n—k—1 to get a p-value, which gives us the Pr(|3| >
B | B =0). For a two-sided test, —|T| < T(%,df)
for us to reject the null-hypothesis at « significance
level. For multiple comparisons p-values have to be

adjusted. Bonferroni correction

PAdj. = P - Ntests

1.4 Confidence Intervals
Confidence way of inverting p-values to get range of

plausible values of 5.
~ [0 — A
B0, dp) - SED)

Valid interpretations of 95% Cls: “At the 95% con-
fidence level we estimate that the population param-
eter lies between [...]”, or “Interval contains the pa-
rameter with 95% confidence.” 95% of the 95%-Cls
generated from oo samples of the population would

contain the true parameter of interest.

2 Ordinary Least Squares

With independent and identically distributed (iid)

observations Y; and X1, ..., X} linear model is

Yi=a+5Xu+..+ 65Xk +6

2.1 Model Assumptions
LY, ALY, Vit
2. € ~ N(0,0) with 6% < oo
3. E[Y;] is linear in all X
4. Covlej, €] =0V i#j

2.2 Simple Linear Regression
In SLR, can estimate the T-statistic of B using R?
by the following formula

VR?

1-R?
n—2

T —

In SLR, R? = r%y, where rxy correlation of X,Y".

2.3 Interaction Effects
Y =a+ 51 X1+ foXo+ 3(X1 - Xo) + €

Partial association of Xi1,Y has to be interpreted

using 51 + B3 Xa.

partial relationship between Xi,Y gets stronger.

Le., if B3 > 0 as X2 increases,
If B3 < 0 relationship gets weaker. Relationship
between X;,Y always has to be interpreted condi-

tional on Xs.

2.4 R? and Adjusted R?

Residual standard deviation is estimated by

5o SSE
S Vn—-k-1
95% of observations fall within £1.96 - & of the re-

gression line. Goodness of fit measure

w2 TSS—SSE _ $(Vi—Y)? = X%~ Yi)?
R SV - V)




Adjusted R? is given by

Tss SSE
p2 ol (D (n—1)R*—k
o 755 n—(k+1)
2 2 k.
Whether R, << R” depends on whether — is large.
n
2.5 F-Test

To test whether a set of coeflicient estimates are all

zero, F-test. Null-hypothesis of F-test:

Ho: Bg+1=Bg+2=...=B=0

H, : at least one of 441, Bg+2, ..., Bx is not 0

In the context of OLS, usually a model My with kg
independent variables (IVs), and M, with k, IVs.
My is nested in M,.

SSEy—SSE, RZ—R3 AR?
F — ka_kO ka_kO — Adf
SSE, 1-R2 1-R2

n—(kq+1) n—kqg—1 n—(kq+1)

Sampling distribution of F-statistic under the null
hypothesis is the F-distribution with k, — ko and
n — (kg + 1) degrees of freedom. If M, has an ad-
ditional coefficient, than F = T?. If My has no ex-
planatory variables (kg = 0, R% =0,SSE,=TS58S),

F-statistic becomes

Rr? SSM
_ k _ k
F= 1-R2 ~ __SSE
n—(k+1) n—(k+1)

3 Binary Logistic Regression

Because 0 < Pr(Y; = 1) = m; < 1, need to model
transformation of 7. To expand domain to (0, c0),
we use Odds = 1%, then take the log., to ex-
pand domain to (—oo,00). With iid observations
Y; € {0,1} and X3, ..., X} binary logistic regression

(BLR) model is

) =a+ ﬁlei + ...+ ﬂlei

logit = log, ( 1 i

i
where m; = P(Y; = 1). Underlying distribution is

Bernoulli (special case of binomial), with E[Y] = =,

and Var[Y] = n(1 — m). Fitted probabilities/odds

T
tog (1 — 7r,> =a+ Xy + o+ B X

Odds = T OB X it 4B X
1-— YUy

T = 1 4+ extBiXvit . +8k Xi
3.1 p-values and Clis for BLR
BLR coefficients tested for significance using

5

SE(B)

p-values from the standard normal distribution (¢-
distribution with df = o0). For 2-tailed test with
a = 0.05, z, &~ 1.96. Wald test statistic

W=22= </\B )2
SE(B)

is compared to x? distribution with df = 1. Confi-

dence intervals in log-odds are calculated by
B + 2 @(B )
and in odds ratios by

efé:tza @(5)

3.2 Likelihood Ratio Test

Likelihood L o to probability of obtaining observed
pattern of results in sample if, model were true.
Likelihood ratio test compares models for improve-
ments in fit. Consider Lg of simpler My, L, of com-
plex M, with additional 3y, (My nested in M,). Like-
lihood ratio test Hy : B = 0, for as many additional
Bi’s as needed. Likelihood ratio test statistic is cal-

culated by:

et () - ()
= —2(log (Lo) — log (La))

— 2log (Lq) — 2log (Lo)

Compare to y2-distribution with df = extra param-

eters in M,,.



3.3 Fit Statistics
MacFadden’s Pseudo-R? given by

—log Ly — (—log Ly)
—log Ly

where Ly = likelihood of null (intercept only)
model. Interpretation: proportional improvement in
fit, not explained variance.

Deviance is "distance” between model of inter-
est and "saturated” model with n parameters. Lg =
likelihood of saturated model.

Null deviance
2log (Lg) — 2log (Ly) with df = dfs — dfy
2log (Lg) — 2log (L1) with df = dfs — dfy
Residual deviance
Information criteria (IC), e.g. Akaike’s IC (AIC)
AIC = =2log L1 + 2k, with & = number of

model parameters, including intercept (and in case

of Negative-Binomial underdispersion parameter.

Smaller AIC’s are better.

4 Multinomial Logistic Regression

Odds
ing/happening to something happening/something

generalise from something not happen-

else happening.

Odds(Y =
Oddsy (k) =

The multinomial logistic (MLR)

Consider

regression
model  uses this  property.
Yi, X1, Xoiy oo, Xy Vi € {1,2,...,
{0,1,...,C =1} (C
Y;’s are iid from multinomial distribution with prob-
abilites FZ(O),TFZ(D, e WZ(C_l). MLR model is then
defined as

()
log (”@0)) e
;

)+ BV X1+ o+ B X
Vjied{l2,..,

category are analogous to BLR. For non-reference

n}, where Y; €

= number of categories). Again

C'—1}. Interpretation to the reference

categories, i.e. from j to 1, eﬁ(j)_ﬁm_

. ' - )
log Z(l) = ( "‘ Z sz
4 =1
for each j € {2,...,C — 1}.
4.1 Fitted Probabilities
Let
. ) 4 gl ()
L(j) =log | =5 | = ol + 87 X0+ o+ B X
Trl
then
el ()
) = P(Y =j) =
1+ Zz el
O = py =
: ( ) 1+ ZC LeL)

4.2 p-values and Cls
As with BLR, i.e. using z-statistic for individual
coefficients, and likelihood ratio test for multiples

coeflicients.

4.3 Model Assumption

MLR has relies on independence of irrelevant al-
ternatives (ITA), implies that presence or absence
of alternative has no effect on relative proportion of
individuals choosing among remaining alternatives.

Unlikely to be sensible in applications of MLR.

5 Ordinal Logistic Regression

Consider iid ordinal outcome variable Y; with C

categories, such that j € {1,2,...,C}. Then

vV e{l,2,..,C}, and
J
Pr(Y <j)=+Y = Zﬂ(l)
=1
Vje{l,2,..,C—1} and



The ordinal logistic regression (OLR) model consid-
ers a model for each comparison of all categories be-

low a threshold to all categories above

Pr(Y <j) ’Y(j) )
- Vic{l2..C
PrY >j) 1 je{l2..

The OLR model with X7y, ...,
ables is then

log 7PT(E =J) = log %,(j)
Pr(Y; > j) 1— '7'(j)

K3
= oY) — (B1 X1 + ... + BeXii)
ea(j),(ﬁ1X1i+...+ﬁkai)

- 1 + ea@—(B1X1i+.. 4Bk Xks)

X}, explanatory vari-

Properties of coefficients are that oM< <
a(C_l), to guarantee that fy(l) < < 'y(c_l).
51, B2, ..., B, are the same V j. Finally,

Pr(Yi = j) = Pr(Y; < j)=Pr(Yi < j—=1) =y =071

5.1 Fitted Probabilities

Fitted probabilities for individual categories j are

ea(1)7(61X1+,..+ﬂka)

- 14+ 60(1)—(,31X1+---+5kxk)
ea<j)—(,31X1+---+/3ka)

1 4 e (B X1+ A B Xp)
ea(j_l)—(51X1+m+5ka)

1 40U D —(B1 X1+ ..+ Xe)

for j € {2,...,C — 1}, and

eOt(Cil)—(Ble-‘r...-‘rﬁka)

PY =C)=1-—+C"1D=1-

5.2 p-values and Cls
Same as with BLR

5.3 Proportional Odds Assumption
The OLR model assumes same coefficients
B1,..,Br ¥V j. The increase in the odds of going

from Y < j to Y > j associated with a increase in

X, is the same V j.

1+ e €D —(B1 X1+... 4Bk Xp)

6 Count Regression Models

6.1 Poisson Regression
Can use poisson distribution for count data, models
probability of observing a number y of events per

unit of observation.

67)\

() = 2
E[y[A] = A
Varly|A] = A

with y € {0,N}, A € (0,00).

model is then

Poisson regression

10g<)\z) =+ 51X1i + ...+ ﬁkaZ
\ = A1 Xit B, X

Assumption that for given E[y] = A\, Var[y] = A too
is very strong. When there is overdispersion, Poisson

will tend to yield SEs that are too small.

6.2 Negative-Binomial Regression
The negative-binomial relaxes this interpretation,
allows for overdispersion (not for underdispersion).

Following properties

ElylAl = A
)\2

Varly|\] = A+ vl

Estimates model of similar form as Poisson + 6.

6.3 p-values and Cls
Same as with BLR.

7 Properties of log and e

log(e) = 1, log(1) = 0, log(z") = r - log(z),

log(ed) = A, 8 = A log(AB) = log(A) +

log(B), log < ) log(A) — log(B), €48 = (e?)B,
eAeB A-B — e’

6 efB



