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1 Hypothesis Testing & Inference

1.1 Null-Hypotheses
Null-hypothesis (H0), usually H0 : β = 0, where

β = population parameter of interest. Alternative

hypothesis (Ha), can be two-sided (Ha : β 6= 0),

one-sided (Ha : β > 0 or Ha : β < 0).

1.2 T -Test
The T -statistic compares β̂ to it’s estimated sam-

pling variability, ŜE(β̂). In OLS,

ŜE(β̂) =

√ ∑
(Yi − Ŷi)2

(n− k − 1) ·
∑

(xi − x̄)2

given a β0 (under the null), the T -statistic is then

(and always) calculated by

T =
β̂ − β0

ŜE(β̂)

Usually, β0 = 0.

1.3 p-values
In OLS, we compare T the T -distribution w/ df =

n−k−1 to get a p-value, which gives us the Pr(|β̂| ≥
β̂ | β = 0). For a two-sided test, −|T | < T (

α

2
, df)

for us to reject the null-hypothesis at α significance

level. For multiple comparisons p-values have to be

adjusted. Bonferroni correction

pAdj. = p · ntests

1.4 Confidence Intervals
Confidence way of inverting p-values to get range of

plausible values of β.

β̂ ± |T (
α

2
, df)| · ŜE(β̂)

Valid interpretations of 95% CIs: “At the 95% con-

fidence level we estimate that the population param-

eter lies between [...]”, or “Interval contains the pa-

rameter with 95% confidence.” 95% of the 95%-CIs

generated from ∞ samples of the population would

contain the true parameter of interest.

2 Ordinary Least Squares

With independent and identically distributed (iid)

observations Yi and X1, ..., Xk linear model is

Yi = α+ β1X1i + ...+ β1Xki + εi

2.1 Model Assumptions
1. Yi ⊥⊥ Yj ∀ i 6= j

2. εi ∼ N (0, σ) with σ2 <∞
3. E[Yi] is linear in all X

4. Cov[εi, εj ] = 0 ∀ i 6= j

2.2 Simple Linear Regression
In SLR, can estimate the T -statistic of β̂ using R2

by the following formula

T =

√
R2√

1−R2

n−2

In SLR, R2 = r2
XY , where rXY correlation of X,Y .

2.3 Interaction Effects
Y = α+ β1X1 + β2X2 + β3(X1 ·X2) + ε

Partial association of X1, Y has to be interpreted

using β1 + β3X2. I.e., if β3 > 0 as X2 increases,

partial relationship between X1, Y gets stronger.

If β3 < 0 relationship gets weaker. Relationship

between X1, Y always has to be interpreted condi-

tional on X2.

2.4 R2 and Adjusted R2

Residual standard deviation is estimated by

σ̂ =

√
SSE

n− k − 1

95% of observations fall within ±1.96 · σ̂ of the re-

gression line. Goodness of fit measure

R2 =
TSS − SSE

TSS
=

∑
(Yi − Ȳ )2 −

∑
(Yi − Ŷi)2∑

(Yi − Ȳ )2
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Adjusted R2 is given by

R2
adj =

TSS
n−1
− SSE

n−(k+1)

TSS
n−1

=
(n− 1)R2 − k
n− (k + 1)

WhetherR2
adj << R2 depends on whether

k

n
is large.

2.5 F -Test
To test whether a set of coefficient estimates are all

zero, F -test. Null-hypothesis of F -test:

H0 : βg+1 = βg+2 = ... = βk = 0

Ha : at least one of βg+1, βg+2, ..., βk is not 0

In the context of OLS, usually a model M0 with k0

independent variables (IVs), and Ma with ka IVs.

M0 is nested in Ma.

F =
SSE0−SSEa

ka−k0
SSEa

n−(ka+1)

=

R2
a−R2

0

ka−k0
1−R2

a

n−ka−1

=

∆R2

∆df

1−R2
a

n−(ka+1)

Sampling distribution of F-statistic under the null

hypothesis is the F-distribution with ka − k0 and

n − (ka + 1) degrees of freedom. If Ma has an ad-

ditional coefficient, than F = T 2. If M0 has no ex-

planatory variables (k0 = 0, R2
0 = 0, SSE0 = TSS),

F -statistic becomes

F =
R2

k
1−R2

n−(k+1)

=
SSM
k

SSE
n−(k+1)

3 Binary Logistic Regression

Because 0 ≤ Pr(Yi = 1) = πi ≤ 1, need to model

transformation of π. To expand domain to (0,∞),

we use Odds =
π

1− π
, then take the loge, to ex-

pand domain to (−∞,∞). With iid observations

Yi ∈ {0, 1} and X1, ..., Xk binary logistic regression

(BLR) model is

logit = loge(
πi

1− πi
) = α+ β1X1i + ...+ β1Xki

where πi = P (Yi = 1). Underlying distribution is

Bernoulli (special case of binomial), with E[Y ] = π,

and V ar[Y ] = π(1− π). Fitted probabilities/odds

log
(

πi
1− πi

)
= α + β1X1i + ...+ βkXki

Odds =
πi

1− πi
= eα+β1X1i+...+βkXki

πi =
eα+β1X1i+...+βkXki

1 + eα+β1X1i+...+βkXki

3.1 p-values and CIs for BLR
BLR coefficients tested for significance using

z =
β̂

ŜE(β̂)

p-values from the standard normal distribution (t-

distribution with df = ∞). For 2-tailed test with

α = 0.05, zα ≈ 1.96. Wald test statistic

W = z2 =

(
β̂

ŜE(β̂)

)2

is compared to χ2 distribution with df = 1. Confi-

dence intervals in log-odds are calculated by

β̂ ± zα · ŜE(β̂)

and in odds ratios by

eβ̂±zα·ŜE(β̂)

3.2 Likelihood Ratio Test
Likelihood L ∝ to probability of obtaining observed

pattern of results in sample if, model were true.

Likelihood ratio test compares models for improve-

ments in fit. Consider L0 of simpler M0, La of com-

plexMa with additional βk (M0 nested inMa). Like-

lihood ratio test H0 : βk = 0, for as many additional

βk’s as needed. Likelihood ratio test statistic is cal-

culated by:

L2 = log
(
La
L0

)2

= −2log
(
La
L0

)
= −2 (log (L0)− log (La))

= 2log (La)− 2log (L0)

Compare to χ2-distribution with df = extra param-

eters in Ma.

2



3.3 Fit Statistics
MacFadden’s Pseudo-R2 given by

−log LN − (−log L1)

−log L1

where LN = likelihood of null (intercept only)

model. Interpretation: proportional improvement in

fit, not explained variance.

Deviance is ”distance” between model of inter-

est and ”saturated” model with n parameters. LS =

likelihood of saturated model.

Null deviance︷ ︸︸ ︷
2log (LS)− 2log (LN ) with df = dfS − dfN

2log (LS)− 2log (L1)︸ ︷︷ ︸
Residual deviance

with df = dfS − df1

Information criteria (IC), e.g. Akaike’s IC (AIC)

AIC = −2log L1 + 2k, with k = number of

model parameters, including intercept (and in case

of Negative-Binomial underdispersion parameter.

Smaller AIC’s are better.

4 Multinomial Logistic Regression

Odds generalise from something not happen-

ing/happening to something happening/something

else happening.

Odds(Y = 1) =
Pr(Y = 1)

Pr(Y = 0)
=

Pr(Y = 1)

1− Pr(Y = 1)

Oddsk′(k) =
Pr(Y = k)

Pr(Y = k′)

The multinomial logistic regression (MLR)

model uses this property. Consider

Yi, X1i, X2i, ..., Xki ∀ i ∈ {1, 2, ..., n}, where Yi ∈
{0, 1, ..., C − 1} (C = number of categories). Again

Yi’s are iid from multinomial distribution with prob-

abilites π
(0)
i , π

(1)
i , ..., π

(C−1)
i . MLR model is then

defined as

log

(
π

(j)
i

π
(0)
i

)
= α(j) + β

(j)
1 X1i + ...+ β

(j)
k Xki

∀ j ∈ {1, 2, ..., C−1}. Interpretation to the reference

category are analogous to BLR. For non-reference

categories, i.e. from j to 1, eβ
(j)−β(1)

.

log

(
π

(j)
i

π
(1)
i

)
= (α(j) − α(1)) +

k∑
l=1

(β
(j)
l − β

(1)
l )Xki

for each j ∈ {2, ..., C − 1}.

4.1 Fitted Probabilities
Let

L(j) = log

(
π

(j)
i

π
(0)
i

)
= α(j) + β

(j)
1 X1i + ...+ β

(j)
k Xki

then

π(j) = P (Y = j) =
eL(j)

1 +
∑C−1

l=1 eL(l)

π(0) = P (Y = 0) =
1

1 +
∑C−1

l=1 eL(l)

4.2 p-values and CIs
As with BLR, i.e. using z-statistic for individual

coefficients, and likelihood ratio test for multiples

coefficients.

4.3 Model Assumption
MLR has relies on independence of irrelevant al-

ternatives (IIA), implies that presence or absence

of alternative has no effect on relative proportion of

individuals choosing among remaining alternatives.

Unlikely to be sensible in applications of MLR.

5 Ordinal Logistic Regression

Consider iid ordinal outcome variable Yi with C

categories, such that j ∈ {1, 2, ..., C}. Then

Pr(Y = j) = π(j)

∀ j ∈ {1, 2, ..., C}, and

Pr(Y ≤ j) = γ(j) =

j∑
l=1

π(l)

∀ j ∈ {1, 2, ..., C − 1} and

Pr(Y ≤ C) = γ(C) = 1
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The ordinal logistic regression (OLR) model consid-

ers a model for each comparison of all categories be-

low a threshold to all categories above

Pr(Y ≤ j)
Pr(Y > j)

=
γ(j)

1− γ(j)
∀ j ∈ {1, 2, ..., C − 1}

The OLR model with X1, ..., Xk explanatory vari-

ables is then

log
(
Pr(Yi ≤ j)
Pr(Yi > j)

)
= log

(
γ

(j)
i

1− γ(j)
i

)
= α(j) − (β1X1i + ...+ βkXki)

Pr(Yi ≤ j) = γ
(j)
i =

eα
(j)−(β1X1i+...+βkXki)

1 + eα
(j)−(β1X1i+...+βkXki)

Properties of coefficients are that α(1) < ... <

α(C−1), to guarantee that γ(1) < ... < γ(C−1).

β1, β2, ..., βk are the same ∀ j. Finally,

Pr(Yi = j) = Pr(Yi ≤ j)−Pr(Yi ≤ j−1) = γ(j)−γ(j−1)

5.1 Fitted Probabilities
Fitted probabilities for individual categories j are

P (Y = 1) = γ(1) =
eα

(1)−(β1X1+...+βkXk)

1 + eα
(1)−(β1X1+...+βkXk)

P (Y = j) = γ(j) − γ(j−1) =
eα

(j)−(β1X1+...+βkXk)

1 + eα
(j)−(β1X1+...+βkXk)

− eα
(j−1)−(β1X1+...+βkXk)

1 + eα
(j−1)−(β1X1+...+βkXk)

for j ∈ {2, ..., C − 1}, and

P (Y = C) = 1−γ(C−1) = 1− eα
(C−1)−(β1X1+...+βkXk)

1 + eα
(C−1)−(β1X1+...+βkXk)

5.2 p-values and CIs
Same as with BLR

5.3 Proportional Odds Assumption
The OLR model assumes same coefficients

β1, ..., βk ∀ j. The increase in the odds of going

from Y ≤ j to Y > j associated with a increase in

X, is the same ∀ j.

6 Count Regression Models

6.1 Poisson Regression
Can use poisson distribution for count data, models

probability of observing a number y of events per

unit of observation.

p(y|λ) =
λye−λ

y!

E[y|λ] = λ

V ar[y|λ] = λ

with y ∈ {0,N}, λ ∈ (0,∞). Poisson regression

model is then

log(λi) = α + β1X1i + ...+ βkXki

λi = eα+β1X1i+...+βkXki

Assumption that for given E[y] = λ, V ar[y] = λ too

is very strong. When there is overdispersion, Poisson

will tend to yield SEs that are too small.

6.2 Negative-Binomial Regression
The negative-binomial relaxes this interpretation,

allows for overdispersion (not for underdispersion).

Following properties

E[y|λ] = λ

V ar[y|λ] = λ+
λ2

θ

Estimates model of similar form as Poisson + θ.

6.3 p-values and CIs
Same as with BLR.

7 Properties of log and e

log(e) = 1, log(1) = 0, log(xr) = r · log(x),

log(eA) = A, elog(A) = A, log(AB) = log(A) +

log(B), log
(
A

B

)
= log(A) − log(B), eAB = (eA)B,

eA+B = eAeB, eA−B =
eA

eB
.
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