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1 Potential Outcomes Framework

Causal effect is a change in some feature of the world Y

that would result from a change to some other feature of
the world D. For each i, two potential outcomes. Y1i

is potential outcome for i if Di = 1 and Y0i is potential
outcome for i if Di = 0. Observed outcomes Yi are
realised as

Yi = Di · Y1i + (1−Di) · Y0i

=

Y1i if Di = 1

Y0i if Di = 0

On the individual level, treatment effect is

τi = Y1i − Y0i

Because τi = Y1i − Y0i are unobservable, interest in dif-
ferent estimand, the average treatment effect (ATE)

δ = E [τi] = E [Y1i − Y0i]

Other types of average treatment effects:

τATT =

Average treatment effect on the treated︷ ︸︸ ︷
E [Y1i − Y0i|Di = 1]

τATC =

Average treatment effect on the controls︷ ︸︸ ︷
E [Y1i − Y0i|Di = 0]

τCATE =

Conditional average treatment effect︷ ︸︸ ︷
E [Y1i − Y0i|Xi = x]

Crucial assumption underlying all causal inference is
SUTVA. SUTVA is assumption of causal effect stability:
no multiple versions of treatment; potential outcomes of
i unaffected by changes in the treatment exposures of
j ∀ j ̸= i. Simplified, for Ydidji the SUTVA means:

Y11i = Y10i and Y01i = Y00i

SUTVA is likely to be violated when units are in
close contact in social and physical space and when di-
lution/concentration effects arise that one can assume
would result from changes in the prevalence of the treat-
ment.

2 Measuring Uncertainty

2.1 Bias and precision
Estimator = Estimand + Bias︸︷︷︸

Systematic error

+ Noise︸ ︷︷ ︸
Sampling error

2.2 Quantifying precision and Hypothesis
Testing
For a refresher on NHST and statistical inference see sec-
tion 1 of my MY452 cheat sheet.

2.3 OLS Regression
For a refresher on OLS regression see section 2 of my
MY452 cheat sheet.

2.4 Robust Standard Errors
To account for variability in sample realisation and re-
alisation of potential outcomes, use robust standard
errors, the closed form solution of which is

SE
ÂTE
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√
V ar

[
ÂTE

]
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[
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= (
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with N units, N1 assigned to treatment and N0 = N−N1.
Since Cov [Y1i, Y0i] is unobservable, default to a conser-
vative estimator of SE, by plugging in maximum value
of Cov [Y1i, Y0i] = 1. This conservative estimator is for-
mally defined by

ŜE
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with estimators of the sample variances given by
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1
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and

̂V ar [Y0i] =
1

N0 − 1

N∑
i|Di=0

Y0i −

(∑N
i|Di=0 Y0i

N0

)2

= σ̂2
Y |Di=0

3 Randomised Experiments

In experimental setting, know that units were randomly
assigned into control and treatment groups. Hence es-
timate ATE simply by comparing average observed out-
comes.

τATE = E [Y1i − Y0i] = E [Y1i]− E [Y0i]

= E [Yi|Di = 1]− E [Yi|Di = 0]︸ ︷︷ ︸
Difference in means

3.1 Blocking
When randomly assigning treatments to participants, one
might get unlucky and have unbalanced groups along key
confounders. One can balance characteristics manually
by blocking. Separate sample of N into J groups before
randomisation. Then within each block, randomly assign
units to the treatment and control groups.

τATE =

J∑
j=1

Nj

N
τj

an unbiased estimator for this quantity is

τ̂ATE =

J∑
j=1

Nj

N
τ̂j

When analyzing a blocked randomised experiment with
regression, block dummies should be included when
analysing results

Yi = τDi +

J∑
j=1

βjBij + ϵi

where Bj is a dummy for j-th block. However, when
probability of receiving treatment pij = P (Dij = 1) is
not equal across blocks, possibly need to weight treated
units by inverse of probability of being assigned to treat-
ment

1

pij
and control units by inverse of probability of

being assigned to control group
1

1− pij
so that

wij =
1

pij
Di +

1

1− pij
(1−Di)

Weights have to be used when using regression to esti-
mate the ATE. Because randomisation within each block
are independent, variance of blocking estimator is simply

V ar(τ̂ATE) = V ar

J∑
j=1

(
Nj

N

)2

V ar(τ̂j)

4 Selection on observables

Researchers must consider why some units received one
treatment rather than another. Assignment mechanism
is crucial for research design. Using selection on ob-
servables (SOO) design, researchers make assumption
that assignment to treatment was based on observable
characteristics of units. If researchers could observe all
the covariates used to assign units to treatment, they
could identify causal effects.

4.1 Identification Assumptions
To use SOO research design two assumptions need to
hold.

(Y1, Y0) ⊥⊥ D|X

0 < Pr(D = 1|X) < 1

If assumptions are satisfied, ATE is then given by

τATE =

∫
E [Yi1 − Yi0|X] dP (X)

Using the SOO assumptions, the following equation*s are
therefore true:

We don’t observe this︷ ︸︸ ︷
E [Yi0|X,D = 1] =

We do observe this︷ ︸︸ ︷
E [Yi0|X,D = 0]

E [Yi1|X,D = 0]︸ ︷︷ ︸
We don’t observe this

= E [Yi1|X,D = 1]︸ ︷︷ ︸
We do observe this

Therefore, given SOO holds, can simplify the esti-
mand to:

τATE =

∫
(E [Y |X,D = 1]− E [Y |X,D = 0] dP (X)

If we only interested in an ATT/ATC can even relax our
assumptions to Y0 ⊥⊥ D|X and Pr(D = 1|X) < 1/Y1 ⊥⊥
D|X and 0 < Pr(D = 1|X).

4.2 Estimation using SOO and Regression
Estimate τOLS using fully saturated regression. Suppose
that the covariates take on a finite number of values:
x1, x2, ..., xk then

Yi = τ̂OLSDi +

K∑
k=1

Zkβ̂k + ϵi
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with

Zk =

1 if X = xk

0 if X ̸= xk

τOLS is conditional variance weighted average of stratum-
specific causal effects, i.e. regression weights by the
marginal distribution of X and the conditional variance
of V ar [D|X] in each stratum:

τOLS =

K∑
k=1

E
[
Y |D = 1, X = xk

]
−E

[
Y |D = 0, X = xk

]
·wk

with

wk =
V ar

[
D|X = xk

]
Pr(X = xk)∑K

k=1 V ar [D|X = x]Pr(X = x)

4.3 Estimation using SOO and Matching
To estimate τATT , match treated units to untreated units
with the same X, while match untreated units to treated
units to estimate τATC . Finally, to estimate τATE , match
in both directions. Matching estimator of τATT can be
constructed by “imputing” missing potential outcome of
each treated unit using observed outcome from the “clos-
est” untreated unit

τ̂ATT =
1

N1

∑
Di=1

(Yi − Yj(i))

where Yj(i) is outcome of untreated observation such that
Xj(i) is closest value to Xi among untreated units. Can
also use the average for M closest matches

τ̂ATT =
1

N1

∑
Di=1

Yi − (
1

M

M∑
m=1

Yjm(i))

Works well when good matches for each treated unit
available, so M is usually small (typically, M = 1 or
M = 2). Can also match on more than one variable.
In that case, need to define distance metric to measure
“closeness”. For propensity score matching, the propen-
sity score is defined as the selection probability condi-
tional on confounding variables

p(X) = P (D = 1|X)

5 Instrumental Variables

5.1 Binary instruments
If using IVs to get more precise τ ’s out of experiments,
usually work with binary instrument Zi

Zi =

1 if unit i assigned to receive treatment

0 if unit i not assigned to receive treatment

Let Diz denote potential treatment status for unit i given
Zi = z.

Diz =

1 if unit i takes treatment given Zi = z

0 if unit i does not take treatment given Zi = z

Finally, let Di denote the observed treatment, which is
realised as Di = Zi ·Di1 + (1− Zi) ·Di0 such that

Di =

Di1 if Zi = 1

Di0 if Zi = 0

Given these definitions, can classify any given unit ac-
cording to their potential treatment status

• Compliers: Di1 > Di0 (i.e. Di0 = 0 and Di1 = 1).

• Always-takers: Di1 = Di0 = 1.

• Never-takers: Di1 = Di0 = 0.

• Defiers: Di1 < Di0 (i.e. Di0 = 1 and Di1 = 0).

In the IV framework, two estimands:
The intention-to-treat (ITT) effect is causal effect of
treatment assignment, ignoring non compliance. The lo-
cal average treatment effect (LATE) for compliers is
average causal effect for units whose treatment status is
entirely determined by instrument. To estimate LATEs,
have to make four critical assumptions

1. Exogeneity of the Instrument

Yi(Di, Zi), Di1, Di0 ⊥⊥ Zi

This assumption yields ITT.

τITT = E [Yi(Di1, Zi = 1)− Yi(Di0, Zi = 0)]

= E [Yi|Zi = 1]− E [Yi|Zi = 0]

2. Exclusion Restriction
Instrument has no direct effect on outcome, once
fix value of treatment

Yi(Di = 1, Zi = 1) = Yi(Di = 1, Zi = 0) = Yi1

and

Yi(Di = 0, Zi = 1) = Yi(Di = 0, Zi = 0) = Yi0

Zi only affects Yi through Di.
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3. First-stage relationship
Instrument must have an effect on treatment.

0 < P (Zi = 1) < 1 & P (Di1 = 1) ̸= P (Di0 = 1)

4. Monotonicity
Monotonicity says that presence of instrument
never dissuades someone from taking treatment.

Di1 ≥ Di0

Under these four assumptions, we LATE for compliers is
identified

τLATE = E [Yi1 − Yi0|Di0 > Di1]

=

ITT︷ ︸︸ ︷
E [Yi|Zi = 1]− E [Yi|Zi = 0]

E [Di|Zi = 1]− E [Di|Zi = 0]︸ ︷︷ ︸
Proportion of compliers

Wald estimator:

τ̂LATE =
ȲZi=1 − ȲZi=0

D̄Zi=1 − D̄Zi=0

Two-stage least-squares (2SLS). First predict treat-
ment status Di

Di = α1 + β1Zi + ϵ1i

then use fitted values D̂i to estimate average effect of Di

on Yi for compliers

Yi = α2 + β2D̂i + ϵ2i

β̂2 is an estimate of τLATE .

6 Regression Discontinuity

In cases where Regression Discontinuity Design (RDD)
is viable, treatment (D) isn’t randomly assigned, but de-
termined by value of observed covariate X lying on either
side of fixed threshold c. The estimand of RDD is average
causal effect of treatment at the cutoff, type of LATE.
The crucial identification assumption is that the poten-
tial outcomes are continuous in X around c, i.e. units
with scores barely below the cutoff can be used as coun-
terfactuals for units with scores barely above it. In sharp
RD design, assignment to treatment Di is completely de-
termined by value of covariate Xi being on either side of
threshold c:

Di = 1(Xi > c) =

1 if Xi > c

0 if Xi < c

Local Average Treatment effect is then

τLATE = E [Y1 − Y0|X = c]

= E [Y1|X = c]− E [Y0|X = c]

Since don’t observe E [Y1|X = c] and E [Y0|X = c],
rely on identification assumption that E [Y1|X = c] and
E [Y0|X = c] are continuous in c, that is

E [Y0|X = c,D = 0] = E [Y0|X = c,D = 1]

E [Y1|X = c,D = 0] = E [Y1|X = c,D = 1]

Thus, can estimate LATE using

τLATE = E [Y1 − Y0|X = c]

= E [Y1|X = c]− E [Y0|X = c]

= lim
x↓c

E [Y |X = c]− lim
x↑c

E [Y |X = c]

6.1 Estimation of τLATE

In estimation of τLATE , trim sample to reasonable win-
dow around cutoff c, so only retain values for which
c − h ≤ Xi ≤ c + h, where h is some positive value
that determines size of window. Then generate X̃, which
measures distance to threshold

X̃ = X − c

Finally decide on a model for E [Y |X]. Could use lin-
ear model with same slopes above and below the cutoff,
linear model with different slopes above and below the
cutoff, or non-linear model. For linear model with same
slopes

E [Y |X,D] = D · E [Y1|X] + (1−D) · E [Y0|X]

= D · (τ + µ+ βX) + (1−D) · (µ+ βX)

= D · τ +D · µ+D · βX + µ+ βX −D · µ−D · βX

= µ+ τD + βX − βc+ βc

= (µ− βc) + τD + β(X − c)

= γ + τD + βX̃

Thus we can run a regression of the following specifica-
tion

E [Y |X,D] = γ + τDi + βX̃i

If alternatively decide on linear model with different
slops, will interact treatment status indicator with X̃ to
yield

E [Y |X,D] = γ + τD + β0X̃ + β1(X̃ ·D)
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can also specify a model with non-linear interaction
terms. To achieve this, would add higher order poly-
nomials to our model:

E [Y |X,D] = γ + τD + β0X̃

+ β1X̃
2 + ...+ βk−1X̃

k + βk(X̃ ·D)

+ βk+1(X̃
2 ·D) + ...+ β2k−1(X̃

k ·D)

6.2 Bandwith selection & Valiation
A small h decreases the bias of τ̂LATE . But small h

also increases the variance of τ̂LATE . Use the "optimal"
bandwith, determined by an algorithm.

In practice, three falsification checks should be carried
out. Balance checks: Are covariates discontinuous at the
threshold? Sorting: Are units able to “sort” around the
threshold? Compound Treatment: Are there multiple
changes at the cutoff?

7 Differences-in-difference

Differences-in-Difference (DD) design allows for compar-
ison over time in treatment group, controlling for con-
current time trends using control group. The estimand
is the average treatment effect on the treated in the post-
treatment period.

First, let N units be denoted by i ∈ {1, ..., N}. Two
time periods are denoted by t ∈ {0, 1}. Period t = 0 indi-
cates time period before treatment, while period t = 1 in-
dicates time period after treatment took place. Further,
two groups of units are denoted by Gi ∈ 0, 1. Units in
control group (Gi = 0) do not receive treatment. Units in
treatment group (Gi = 1) receive treatment, but only in
post-treatment period (t = 1). Whether a unit received
treatment in a given period is denoted by treatment indi-
cator Zit ∈ {0, 1}. Each unit has two potential outcomes
in each period Yit(Z). In each period, observed outcomes
Yit are realised as

Yit = ZitYit(1) + (1− Zit)Yit(0)

The estimand is defined as

τATT =E [Yi1(1)− Yi1(0)|Gi = 1]

=E [Yi1(1)|Gi = 1]− E [Yi1(0)|Gi = 1]

Use the difference in difference estimator:

τ̂ATT =

∆ between G1 and G0 in t1︷ ︸︸ ︷
(E [Yi1(1)|Gi = 1]− E [Yi1(0)|Gi = 0])

− (E [Yi0(1)|Gi = 1]− E [Yi0(0)|Gi = 0])︸ ︷︷ ︸
∆ between G1 and G0 in t0

This assumes parallel trends

E [Yi1(0)− Yi0(0)|Gi = 1] = E [Yi1(0)− Yi0(0)|Gi = 0]

This assumption is untestable: we cannot observe po-
tential outcomes under the control condition for treated
units in the post-treatment period.
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